These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 15214534)

  • 1. Ion beam transport in tissue-like media using the Monte Carlo code SHIELD-HIT.
    Gudowska I; Sobolevsky N; Andreo P; Belkić D; Brahme A
    Phys Med Biol; 2004 May; 49(10):1933-58. PubMed ID: 15214534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary particle production in tissue-like and shielding materials for light and heavy ions calculated with the Monte-Carlo code SHIELD-HIT.
    Gudowska I; Andreo P; Sobolevsky N
    J Radiat Res; 2002 Dec; 43 Suppl():S93-7. PubMed ID: 12793738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Monte Carlo evaluation of carbon and lithium ions dose distributions in water.
    Taleei R; Hultqvist M; Gudowska I; Nikjoo H
    Int J Radiat Biol; 2012 Jan; 88(1-2):189-94. PubMed ID: 21929295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microdosimetry of proton and carbon ions.
    Liamsuwan T; Hultqvist M; Lindborg L; Uehara S; Nikjoo H
    Med Phys; 2014 Aug; 41(8):081721. PubMed ID: 25086531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neutron production in tissue-like media and shielding materials irradiated with high-energy ion beams.
    Gudowska I; Kopec M; Sobolevsky N
    Radiat Prot Dosimetry; 2007; 126(1-4):652-6. PubMed ID: 17504751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of nuclear reaction cross-sections and fragment yields in carbon beams using the SHIELD-HIT Monte Carlo code. Comparison with experiments.
    Hultqvist M; Lazzeroni M; Botvina A; Gudowska I; Sobolevsky N; Brahme A
    Phys Med Biol; 2012 Jul; 57(13):4369-85. PubMed ID: 22705925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent improvements in the SHIELD-HIT code.
    Hansen DC; Lühr A; Herrmann R; Sobolevsky N; Bassler N
    Int J Radiat Biol; 2012 Jan; 88(1-2):195-9. PubMed ID: 21819203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Monte Carlo track structure simulation code for the full-slowing-down carbon projectiles of energies 1 keV u(-1)-10 MeV u(-1) in water.
    Liamsuwan T; Nikjoo H
    Phys Med Biol; 2013 Feb; 58(3):673-701. PubMed ID: 23318579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical theory for the fluence, planar fluence, energy fluence, planar energy fluence and absorbed dose of primary particles and their fragments in broad therapeutic light ion beams.
    Kempe J; Brahme A
    Phys Med; 2010 Jan; 26(1):6-16. PubMed ID: 19345598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depth absorbed dose and LET distributions of therapeutic 1H, 4He, 7Li, and 12C beams.
    Kempe J; Gudowska I; Brahme A
    Med Phys; 2007 Jan; 34(1):183-92. PubMed ID: 17278503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluence correction factors and stopping power ratios for clinical ion beams.
    Lühr A; Hansen DC; Sobolevsky N; Palmans H; Rossomme S; Bassler N
    Acta Oncol; 2011 Aug; 50(6):797-805. PubMed ID: 21767177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of secondary neutrons in particle therapy by Monte Carlo simulations.
    Vedelago J; Geser FA; Muñoz ID; Stabilini A; Yukihara EG; Jäkel O
    Phys Med Biol; 2022 Jan; 67(1):. PubMed ID: 34905742
    [No Abstract]   [Full Text] [Related]  

  • 13. Simulation of secondary particle production and absorbed dose to tissue in light ion beams.
    Gudowska I; Sobolevsky N
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):301-6. PubMed ID: 16604649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MONTE-CARLO SIMULATION USING PHITS OF SECONDARY NEUTRONS PRODUCED IN-PATIENT DURING 16O ION THERAPY.
    Boukhellout A; Ounoughi N; Kharfi F
    Radiat Prot Dosimetry; 2022 Feb; 198(1-2):31-36. PubMed ID: 35037066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutrons from fragmentation of light nuclei in tissue-like media: a study with the GEANT4 toolkit.
    Pshenichnov I; Mishustin I; Greiner W
    Phys Med Biol; 2005 Dec; 50(23):5493-507. PubMed ID: 16306647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluence correction factors for graphite calorimetry in a low-energy clinical proton beam: I. Analytical and Monte Carlo simulations.
    Palmans H; Al-Sulaiti L; Andreo P; Shipley D; Lühr A; Bassler N; Martinkovič J; Dobrovodský J; Rossomme S; Thomas RA; Kacperek A
    Phys Med Biol; 2013 May; 58(10):3481-99. PubMed ID: 23629423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing SHIELD-HIT for carbon ion treatment.
    Hansen DC; Lühr A; Sobolevsky N; Bassler N
    Phys Med Biol; 2012 Apr; 57(8):2393-409. PubMed ID: 22469994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy-loss straggling algorithms for Monte Carlo electron transport.
    Chibani O
    Med Phys; 2002 Oct; 29(10):2374-83. PubMed ID: 12408312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo calculated stopping-power ratios, water/air, for clinical proton dosimetry (50-250 MeV).
    Medin J; Andreo P
    Phys Med Biol; 1997 Jan; 42(1):89-105. PubMed ID: 9015811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extension of PENELOPE to protons: simulation of nuclear reactions and benchmark with Geant4.
    Sterpin E; Sorriaux J; Vynckier S
    Med Phys; 2013 Nov; 40(11):111705. PubMed ID: 24320413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.