BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 15214727)

  • 1. The effect of alpha-ketoglutaric acid on amino acid utilization by nonstarter Lactobacillus spp. isolated from Cheddar cheese.
    Williams AG; Noble J; Banks JM
    Lett Appl Microbiol; 2004; 38(4):289-95. PubMed ID: 15214727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperation between Lactococcus lactis and nonstarter lactobacilli in the formation of cheese aroma from amino acids.
    Kieronczyk A; Skeie S; Langsrud T; Yvon M
    Appl Environ Microbiol; 2003 Feb; 69(2):734-9. PubMed ID: 12570989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid fermentation in non-starter Lactobacillus spp. isolated from cheddar cheese.
    Tammam JD; Williams AG; Noble J; Lloyd D
    Lett Appl Microbiol; 2000 May; 30(5):370-4. PubMed ID: 10792665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamate dehydrogenase activity in lactobacilli and the use of glutamate dehydrogenase-producing adjunct Lactobacillus spp. cultures in the manufacture of cheddar cheese.
    Williams AG; Withers SE; Brechany EY; Banks JM
    J Appl Microbiol; 2006 Nov; 101(5):1062-75. PubMed ID: 17040230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactobacillus casei and Lactobacillus plantarum initiate catabolism of methionine by transamination.
    Amarita F; Requena T; Taborda G; Amigo L; Pelaez C
    J Appl Microbiol; 2001 Jun; 90(6):971-8. PubMed ID: 11412327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probiotic bacteria survive in Cheddar cheese and modify populations of other lactic acid bacteria.
    Ganesan B; Weimer BC; Pinzon J; Dao Kong N; Rompato G; Brothersen C; McMahon DJ
    J Appl Microbiol; 2014 Jun; 116(6):1642-56. PubMed ID: 24905221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Succinate production and citrate catabolism by Cheddar cheese nonstarter lactobacilli.
    Dudley EG; Steele JL
    J Appl Microbiol; 2005; 98(1):14-23. PubMed ID: 15610413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth and gas production of a novel obligatory heterofermentative Cheddar cheese nonstarter lactobacilli species on ribose and galactose.
    Ortakci F; Broadbent JR; Oberg CJ; McMahon DJ
    J Dairy Sci; 2015 Jun; 98(6):3645-54. PubMed ID: 25795482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation, characterization, and influence of native, nonstarter lactic acid bacteria on Cheddar cheese quality.
    Swearingen PA; O'Sullivan DJ; Warthesen JJ
    J Dairy Sci; 2001 Jan; 84(1):50-9. PubMed ID: 11210049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of amino acids into aroma compounds by cell-free extracts of Lactobacillus helveticus.
    Klein N; Maillard MB; Thierry A; Lortal S
    J Appl Microbiol; 2001 Sep; 91(3):404-11. PubMed ID: 11556904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a probiotic cheddar cheese containing human-derived Lactobacillus paracasei strains.
    Gardiner G; Ross RP; Collins JK; Fitzgerald G; Stanton C
    Appl Environ Microbiol; 1998 Jun; 64(6):2192-9. PubMed ID: 9603834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ability of thermophilic lactic acid bacteria to produce aroma compounds from amino acids.
    Helinck S; Le Bars D; Moreau D; Yvon M
    Appl Environ Microbiol; 2004 Jul; 70(7):3855-61. PubMed ID: 15240255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonstarter Lactobacillus strains as adjunct cultures for cheese making: in vitro characterization and performance in two model cheeses.
    Briggiler-Marcó M; Capra ML; Quiberoni A; Vinderola G; Reinheimer JA; Hynes E
    J Dairy Sci; 2007 Oct; 90(10):4532-42. PubMed ID: 17881674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The potential of dairy lactic acid bacteria to metabolise amino acids via non-transaminating reactions and endogenous transamination.
    Liu SQ; Holland R; Crow VL
    Int J Food Microbiol; 2003 Sep; 86(3):257-69. PubMed ID: 12915037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid catabolism in cheese-related bacteria: selection and study of the effects of pH, temperature and NaCl by quadratic response surface methodology.
    Curtin AC ; De Angelis M; Cipriani M; Corbo MR; McSweeney PL; Gobbetti M
    J Appl Microbiol; 2001 Aug; 91(2):312-21. PubMed ID: 11473596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial and temporal distribution of non-starter lactic acid bacteria in Cheddar cheese.
    Fitzsimons NA; Cogan TM; Condon S; Beresford T
    J Appl Microbiol; 2001 Apr; 90(4):600-8. PubMed ID: 11309072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and gas formation by Lactobacillus wasatchensis, a novel obligatory heterofermentative nonstarter lactic acid bacterium, in Cheddar-style cheese made using a Streptococcus thermophilus starter.
    Ortakci F; Broadbent JR; Oberg CJ; McMahon DJ
    J Dairy Sci; 2015 Nov; 98(11):7473-82. PubMed ID: 26364109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of chymosin- and plasmin-mediated primary proteolysis on the growth and biochemical activities of lactobacilli in miniature Cheddar-type cheeses.
    Milesi MM; McSweeney PL; Hynes ER
    J Dairy Sci; 2008 Sep; 91(9):3277-90. PubMed ID: 18765587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Late blowing of Cheddar cheese induced by accelerated ripening and ribose and galactose supplementation in presence of a novel obligatory heterofermentative nonstarter Lactobacillus wasatchensis.
    Ortakci F; Broadbent JR; Oberg CJ; McMahon DJ
    J Dairy Sci; 2015 Nov; 98(11):7460-72. PubMed ID: 26298753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of a heterologous glutamate dehydrogenase gene in Lactococcus lactis highly improves the conversion of amino acids to aroma compounds.
    Rijnen L; Courtin P; Gripon JC; Yvon M
    Appl Environ Microbiol; 2000 Apr; 66(4):1354-9. PubMed ID: 10742211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.