These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15214811)

  • 1. Role of the electrostatic interactions in pre-orientation of subunits in the formation of protein-protein complexes.
    Kovalev PV; Drozdov-Tikhomirov LN; Poroikov VV; Alexandrov AA
    J Biomol Struct Dyn; 2004 Aug; 22(1):111-8. PubMed ID: 15214811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [What forces can determine the formation of highly specific protein-protein complexes?].
    Drozdov-Tikhomirov LN; Linde DM; Poroĭkov VV; Aleksandrov AA; Skurida GI; Kovalev PV; Potapov VIu
    Mol Biol (Mosk); 2003; 37(1):164-73. PubMed ID: 12624959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms of protein-protein recognition: whether the surface placed charged residues determine the recognition process?
    Drozdov-Tikhomirov LN; Linde DM; Poroikov VV; Alexandrov AA; Skurida GI
    J Biomol Struct Dyn; 2001 Oct; 19(2):279-84. PubMed ID: 11697732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. About factors providing the fast protein-protein recognition in processes of complex formation.
    Drozdov-Tikhomirov LN; Linde DM; Poroikov VV; Alexandrov AA; Skurida GI; Kovalev PV; Potapov VY
    J Biomol Struct Dyn; 2003 Oct; 21(2):257-66. PubMed ID: 12956609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the influence of the internal aqueous solvent structure on electrostatic interactions at the protein-solvent interface by nonlocal continuum electrostatic approach.
    Rubinstein A; Sherman S
    Biopolymers; 2007 Oct 5-15; 87(2-3):149-64. PubMed ID: 17626298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Atomic force field FFsol for calculation of molecular interactions of in water environment].
    Pereiaslavets LB; Finkel'shtein AV
    Mol Biol (Mosk); 2010; 44(2):340-54. PubMed ID: 20586195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH dependence of binding reactions from free energy simulations and macroscopic continuum electrostatic calculations: application to 2'GMP/3'GMP binding to ribonuclease T1 and implications for catalysis.
    MacKerell AD; Sommer MS; Karplus M
    J Mol Biol; 1995 Apr; 247(4):774-807. PubMed ID: 7723031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The zero-multipole summation method for estimating electrostatic interactions in molecular dynamics: analysis of the accuracy and application to liquid systems.
    Fukuda I; Kamiya N; Nakamura H
    J Chem Phys; 2014 May; 140(19):194307. PubMed ID: 24852538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A precise analytical method for calculating the electrostatic energy of macromolecules in aqueous solution.
    Schaefer M; Froemmel C
    J Mol Biol; 1990 Dec; 216(4):1045-66. PubMed ID: 2266555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study on orientation and absorption spectrum of interfacial molecules by using continuum model.
    Ma JY; Wang JB; Li XY; Huang Y; Zhu Q; Fu KX
    J Comput Chem; 2008 Jan; 29(2):198-210. PubMed ID: 17557282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuum electrostatic analysis of preferred solvation sites around proteins in solution.
    Dennis S; Camacho CJ; Vajda S
    Proteins; 2000 Feb; 38(2):176-88. PubMed ID: 10656264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The barrier for proton transport in aquaporins as a challenge for electrostatic models: the role of protein relaxation in mutational calculations.
    Kato M; Pisliakov AV; Warshel A
    Proteins; 2006 Sep; 64(4):829-44. PubMed ID: 16779836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational spectroscopic determination of local solvent electric field, solute-solvent electrostatic interaction energy, and their fluctuation amplitudes.
    Lee H; Lee G; Jeon J; Cho M
    J Phys Chem A; 2012 Jan; 116(1):347-57. PubMed ID: 22087732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-range electrostatic interactions influence the orientation of Fos-Jun binding at AP-1 sites.
    Ramirez-Carrozzi VR; Kerppola TK
    J Mol Biol; 2001 Jan; 305(3):411-27. PubMed ID: 11152600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and testing of PFFSol1.1, a new polarizable atomic force field for calculation of molecular interactions in implicit water environment.
    Pereyaslavets LB; Finkelstein AV
    J Phys Chem B; 2012 Apr; 116(15):4646-54. PubMed ID: 22439906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic energies and forces computed without explicit interparticle interactions: a linear time complexity formulation.
    Petrella RJ; Karplus M
    J Comput Chem; 2005 Jun; 26(8):755-87. PubMed ID: 15800892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatics of proteins: description in terms of two dielectric constants simultaneously.
    Krishtalik LI; Kuznetsov AM; Mertz EL
    Proteins; 1997 Jun; 28(2):174-82. PubMed ID: 9188735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.