These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 15215010)

  • 1. Ultrathin-wall, two-stage, twin endotracheal tube: a tracheal tube with minimal resistance and minimal dead space for use in newborn and infant patients.
    Kolobow T; Berra L; DeMarchi L; Aly H
    Pediatr Crit Care Med; 2004 Jul; 5(4):379-83. PubMed ID: 15215010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of Endotracheal Tube Connector Dead Space Improves Ventilation: A Bench Test on a Model Lung Simulating an Extremely Low Birth Weight Neonate.
    Ivanov VA
    Respir Care; 2016 Feb; 61(2):155-61. PubMed ID: 26577200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new ultrathin-walled, non-kinking, low-resistance endotracheal tube for neonatal use: preliminary studies of a new no-pressure cuff.
    Kolobow T; Rossi N; Tsuno K; Aprigliano M
    Biomed Instrum Technol; 1994; 28(2):123-9. PubMed ID: 8186805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imposed work of breathing and methods of triggering a demand-flow, continuous positive airway pressure system.
    Banner MJ; Blanch PB; Kirby RR
    Crit Care Med; 1993 Feb; 21(2):183-90. PubMed ID: 8428467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site of pressure measurement during spontaneous breathing with continuous positive airway pressure: effect on calculating imposed work of breathing.
    Banner MJ; Kirby RR; Blanch PB
    Crit Care Med; 1992 Apr; 20(4):528-33. PubMed ID: 1559368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dead-space reduction and tracheal pressure measurements using a coaxial inner tube in an endotracheal tube.
    Lethvall S; Søndergaard S; Kárason S; Lundin S; Stenqvist O
    Intensive Care Med; 2002 Aug; 28(8):1042-8. PubMed ID: 12185423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The minilink breathing system: resistance and suitability for spontaneous ventilation.
    O'Meara ME; Bhatt SB; Breen D; Bennett NR
    Anaesthesia; 1993 Mar; 48(3):235-8. PubMed ID: 8460804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Respiratory death space and ventilation of newborn infants].
    Nolte S
    Klin Padiatr; 1992; 204(5):368-72. PubMed ID: 1405425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficacy of dead-space washout in mechanically ventilated premature newborns.
    Danan C; Dassieu G; Janaud JC; Brochard L
    Am J Respir Crit Care Med; 1996 May; 153(5):1571-6. PubMed ID: 8630604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a new thin-walled endotracheal tube for use in children.
    Okhuysen RS; Bristow F; Burkhead S; Kolobow T; Lally KP
    Chest; 1996 May; 109(5):1335-8. PubMed ID: 8625687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endotracheal tube resistance and inertance in a model of mechanical ventilation of newborns and small infants-the impact of ventilator settings on tracheal pressure swings.
    Hentschel R; Buntzel J; Guttmann J; Schumann S
    Physiol Meas; 2011 Sep; 32(9):1439-51. PubMed ID: 21799238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of a gas leak around the endotracheal tube on the mean tracheal pressure during mechanical ventilation.
    Pérez Fontán JJ; Heldt GP; Gregory GA
    Am Rev Respir Dis; 1985 Aug; 132(2):339-42. PubMed ID: 4026056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of a new, ultrathin-walled two-stage twin endotracheal tube and a conventional endotracheal tube in very premature infants with respiratory distress syndrome: a pilot study.
    Parravicini E; Baccarelli A; Wung JT; Kolobow T; Lorenz JM
    Am J Perinatol; 2007 Feb; 24(2):117-22. PubMed ID: 17304419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in vitro evaluation of the influence of neonatal endotracheal tube diameter and length on the work of breathing.
    Miyake F; Suga R; Akiyama T; Namba F
    Paediatr Anaesth; 2018 May; 28(5):458-462. PubMed ID: 29633434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in vitro study to assess determinant features associated with fluid sealing in the design of endotracheal tube cuffs and exerted tracheal pressures.
    Li Bassi G; Ranzani OT; Marti JD; Giunta V; Luque N; Isetta V; Ferrer M; Farre R; Pimentel GL; Torres A
    Crit Care Med; 2013 Feb; 41(2):518-26. PubMed ID: 23263575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intratracheal pulmonary ventilation keeps tracheal tubes clean without impairing mucociliary transport.
    Trawöger R; Kolobow T; Patroniti N; Forcier K
    Scand J Clin Lab Invest; 2002; 62(5):351-6. PubMed ID: 12387580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical evaluation of tracheal pressure estimation from the endotracheal tube cuff pressure.
    Wilder NA; Orr J; Westenskow D
    J Clin Monit Comput; 1998 Jan; 14(1):29-34. PubMed ID: 9641853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of airway narrowing and dead space on the shape of the capnogram.
    Kinoshita H; Sakamoto K; Ito M
    J Anesth; 1995 Jun; 9(2):161-165. PubMed ID: 28921286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Reduction of apparatus deadspace in pediatric anaesthesia (author's transl)].
    Pfieffer U; Krueger P
    Anaesthesist; 1976 Jan; 25(1):42-6. PubMed ID: 1259131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The comparison of insertion depth for orotracheal intubation between standard polyvinyl chloride tracheal tubes and straight reinforced tracheal tubes.
    Kim JE; Park SW; Kang JM
    J Clin Anesth; 2016 Jun; 31():90-3. PubMed ID: 27185684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.