These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 1521527)
1. Temperature effects on the MgATP-induced electron transfer between the nitrogenase proteins from Azotobacter vinelandii. Mensink RE; Haaker H Eur J Biochem; 1992 Sep; 208(2):295-9. PubMed ID: 1521527 [TBL] [Abstract][Full Text] [Related]
2. Pre-steady-state MgATP-dependent proton production and electron transfer by nitrogenase from Azotobacter vinelandii. Duyvis MG; Wassink H; Haaker H Eur J Biochem; 1994 Nov; 225(3):881-90. PubMed ID: 7957225 [TBL] [Abstract][Full Text] [Related]
3. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex. Lanzilotta WN; Fisher K; Seefeldt LC Biochemistry; 1996 Jun; 35(22):7188-96. PubMed ID: 8679547 [TBL] [Abstract][Full Text] [Related]
4. Electron transfer in nitrogenase analyzed by Marcus theory: evidence for gating by MgATP. Lanzilotta WN; Parker VD; Seefeldt LC Biochemistry; 1998 Jan; 37(1):399-407. PubMed ID: 9425061 [TBL] [Abstract][Full Text] [Related]
5. A reinvestigation of the pre-steady-state ATPase activity of the nitrogenase from Azotobacter vinelandii. Mensink RE; Wassink H; Haaker H Eur J Biochem; 1992 Sep; 208(2):289-94. PubMed ID: 1325902 [TBL] [Abstract][Full Text] [Related]
6. Evidence that MgATP accelerates primary electron transfer in a Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein nitrogenase tight complex. Chan JM; Ryle MJ; Seefeldt LC J Biol Chem; 1999 Jun; 274(25):17593-8. PubMed ID: 10364195 [TBL] [Abstract][Full Text] [Related]
7. Pre-steady-state kinetics of nitrogenase from Azotobacter vinelandii. Evidence for an ATP-induced conformational change of the nitrogenase complex as part of the reaction mechanism. Duyvis MG; Wassink H; Haaker H J Biol Chem; 1996 Nov; 271(47):29632-6. PubMed ID: 8939894 [TBL] [Abstract][Full Text] [Related]
8. Nucleotide hydrolysis and protein conformational changes in Azotobacter vinelandii nitrogenase iron protein: defining the function of aspartate 129. Lanzilotta WN; Ryle MJ; Seefeldt LC Biochemistry; 1995 Aug; 34(34):10713-23. PubMed ID: 7662655 [TBL] [Abstract][Full Text] [Related]
9. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase. Dilworth MJ; Fisher K; Kim CH; Newton WE Biochemistry; 1998 Dec; 37(50):17495-505. PubMed ID: 9860864 [TBL] [Abstract][Full Text] [Related]
10. Electron transfer from the nitrogenase iron protein to the [8Fe-(7/8)S] clusters of the molybdenum-iron protein. Lanzilotta WN; Seefeldt LC Biochemistry; 1996 Dec; 35(51):16770-6. PubMed ID: 8988014 [TBL] [Abstract][Full Text] [Related]
11. Nitrogenase of Azotobacter vinelandii: kinetic analysis of the Fe protein redox cycle. Duyvis MG; Wassink H; Haaker H Biochemistry; 1998 Dec; 37(50):17345-54. PubMed ID: 9860849 [TBL] [Abstract][Full Text] [Related]
12. Identification of a nitrogenase protein-protein interaction site defined by residues 59 through 67 within the Azotobacter vinelandii Fe protein. Peters JW; Fisher K; Dean DR J Biol Chem; 1994 Nov; 269(45):28076-83. PubMed ID: 7961744 [TBL] [Abstract][Full Text] [Related]
13. Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation. Lanzilotta WN; Seefeldt LC Biochemistry; 1997 Oct; 36(42):12976-83. PubMed ID: 9335558 [TBL] [Abstract][Full Text] [Related]
14. Kinetic studies on electron transfer and interaction between nitrogenase components from Azotobacter vinelandii. Hageman RV; Burris RH Biochemistry; 1978 Oct; 17(20):4117-24. PubMed ID: 708696 [TBL] [Abstract][Full Text] [Related]
15. Azotobacter vinelandii nitrogenases containing altered MoFe proteins with substitutions in the FeMo-cofactor environment: effects on the catalyzed reduction of acetylene and ethylene. Fisher K; Dilworth MJ; Kim CH; Newton WE Biochemistry; 2000 Mar; 39(11):2970-9. PubMed ID: 10715117 [TBL] [Abstract][Full Text] [Related]
16. Vanadium nitrogenase of Azotobacter chroococcum. MgATP-dependent electron transfer within the protein complex. Thorneley RN; Bergström NH; Eady RR; Lowe DJ Biochem J; 1989 Feb; 257(3):789-94. PubMed ID: 2784670 [TBL] [Abstract][Full Text] [Related]
17. A transient-kinetic study of the nitrogenase of Klebsiella pneumoniae by stopped-flow calorimetry. Comparison with the myosin ATPase. Thorneley RN; Ashby G; Howarth JV; Millar NC; Gutfreund H Biochem J; 1989 Dec; 264(3):657-61. PubMed ID: 2695063 [TBL] [Abstract][Full Text] [Related]
18. Thermodynamics of nucleotide interactions with the Azotobacter vinelandii nitrogenase iron protein. Lanzilotta WN; Parker VD; Seefeldt LC Biochim Biophys Acta; 1999 Jan; 1429(2):411-21. PubMed ID: 9989226 [TBL] [Abstract][Full Text] [Related]
19. Formation of a tight 1:1 complex of Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein: evidence for long-range interactions between the Fe protein binding sites during catalytic hydrogen evolution. Clarke TA; Maritano S; Eady RR Biochemistry; 2000 Sep; 39(37):11434-40. PubMed ID: 10985789 [TBL] [Abstract][Full Text] [Related]
20. Evidence for electron transfer-dependent formation of a nitrogenase iron protein-molybdenum-iron protein tight complex. The role of aspartate 39. Lanzilotta WN; Fisher K; Seefeldt LC J Biol Chem; 1997 Feb; 272(7):4157-65. PubMed ID: 9020128 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]