These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 15215305)

  • 1. Engrailed-1 expression marks a primitive class of inhibitory spinal interneuron.
    Higashijima S; Masino MA; Mandel G; Fetcho JR
    J Neurosci; 2004 Jun; 24(25):5827-39. PubMed ID: 15215305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurotransmitter properties of spinal interneurons in embryonic and larval zebrafish.
    Higashijima S; Schaefer M; Fetcho JR
    J Comp Neurol; 2004 Nov; 480(1):19-37. PubMed ID: 15515025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primitive roles for inhibitory interneurons in developing frog spinal cord.
    Li WC; Higashijima S; Parry DM; Roberts A; Soffe SR
    J Neurosci; 2004 Jun; 24(25):5840-8. PubMed ID: 15215306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensory gating of an embryonic zebrafish interneuron during spontaneous motor behaviors.
    Knogler LD; Drapeau P
    Front Neural Circuits; 2014; 8():121. PubMed ID: 25324729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shared versus specialized glycinergic spinal interneurons in axial motor circuits of larval zebrafish.
    Liao JC; Fetcho JR
    J Neurosci; 2008 Nov; 28(48):12982-92. PubMed ID: 19036991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The HMG box transcription factors Sox1a and Sox1b specify a new class of glycinergic interneuron in the spinal cord of zebrafish embryos.
    Gerber V; Yang L; Takamiya M; Ribes V; Gourain V; Peravali R; Stegmaier J; Mikut R; Reischl M; Ferg M; Rastegar S; Strähle U
    Development; 2019 Feb; 146(4):. PubMed ID: 30760481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of prospective glutamatergic, glycinergic, and GABAergic neurons in embryonic and larval zebrafish.
    Higashijima S; Mandel G; Fetcho JR
    J Comp Neurol; 2004 Nov; 480(1):1-18. PubMed ID: 15515020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Networks of inhibitory and excitatory commissural interneurons mediating crossed reticulospinal actions.
    Bannatyne BA; Edgley SA; Hammar I; Jankowska E; Maxwell DJ
    Eur J Neurosci; 2003 Oct; 18(8):2273-84. PubMed ID: 14622188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. alx, a zebrafish homolog of Chx10, marks ipsilateral descending excitatory interneurons that participate in the regulation of spinal locomotor circuits.
    Kimura Y; Okamura Y; Higashijima S
    J Neurosci; 2006 May; 26(21):5684-97. PubMed ID: 16723525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in the morphology of spinal V2a neurons reflect their recruitment order during swimming in larval zebrafish.
    Menelaou E; VanDunk C; McLean DL
    J Comp Neurol; 2014 Apr; 522(6):1232-48. PubMed ID: 24114934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topographical and physiological characterization of interneurons that express engrailed-1 in the embryonic chick spinal cord.
    Wenner P; O'Donovan MJ; Matise MP
    J Neurophysiol; 2000 Nov; 84(5):2651-7. PubMed ID: 11068006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotype of V2-derived interneurons and their relationship to the axon guidance molecule EphA4 in the developing mouse spinal cord.
    Lundfald L; Restrepo CE; Butt SJ; Peng CY; Droho S; Endo T; Zeilhofer HU; Sharma K; Kiehn O
    Eur J Neurosci; 2007 Dec; 26(11):2989-3002. PubMed ID: 18028107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal neurons require Islet1 for subtype-specific differentiation of electrical excitability.
    Moreno RL; Ribera AB
    Neural Dev; 2014 Aug; 9():19. PubMed ID: 25149090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engrailed-1 and netrin-1 regulate axon pathfinding by association interneurons that project to motor neurons.
    Saueressig H; Burrill J; Goulding M
    Development; 1999 Oct; 126(19):4201-12. PubMed ID: 10477289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dorsal spinal interneurons forming a primitive, cutaneous sensory pathway.
    Li WC; Soffe SR; Roberts A
    J Neurophysiol; 2004 Aug; 92(2):895-904. PubMed ID: 15028739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of glycinergic neurons in the brain of glycine transporter-2 transgenic Tg(glyt2:Gfp) adult zebrafish: relationship to brain-spinal descending systems.
    Barreiro-Iglesias A; Mysiak KS; Adrio F; Rodicio MC; Becker CG; Becker T; Anadón R
    J Comp Neurol; 2013 Feb; 521(2):389-425. PubMed ID: 22736487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of iro3 expression in the zebrafish spinal cord.
    Lewis KE; Bates J; Eisen JS
    Dev Dyn; 2005 Jan; 232(1):140-8. PubMed ID: 15580554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice.
    Zeilhofer HU; Studler B; Arabadzisz D; Schweizer C; Ahmadi S; Layh B; Bösl MR; Fritschy JM
    J Comp Neurol; 2005 Feb; 482(2):123-41. PubMed ID: 15611994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ALX 1393 inhibits spontaneous network activity by inducing glycinergic tonic currents in the spinal ventral horn.
    Eckle VS; Antkowiak B
    Neuroscience; 2013 Dec; 253():165-71. PubMed ID: 23994185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronal labeling patterns in the spinal cord of adult transgenic Zebrafish.
    Stil A; Drapeau P
    Dev Neurobiol; 2016 Jun; 76(6):642-60. PubMed ID: 26408263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.