BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 1521538)

  • 1. Site-specific mutagenesis of Escherichia coli asparaginase II. None of the three histidine residues is required for catalysis.
    Wehner A; Harms E; Jennings MP; Beacham IR; Derst C; Bast P; Röhm KH
    Eur J Biochem; 1992 Sep; 208(2):475-80. PubMed ID: 1521538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. States and functions of tyrosine residues in Escherichia coli asparaginase II.
    Derst C; Wehner A; Specht V; Röhm KH
    Eur J Biochem; 1994 Sep; 224(2):533-40. PubMed ID: 7925369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the role of threonine and serine residues of E. coli asparaginase II by site-specific mutagenesis.
    Derst C; Henseling J; Röhm KH
    Protein Eng; 1992 Dec; 5(8):785-9. PubMed ID: 1287659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A catalytic role for threonine-12 of E. coli asparaginase II as established by site-directed mutagenesis.
    Harms E; Wehner A; Aung HP; Röhm KH
    FEBS Lett; 1991 Jul; 285(1):55-8. PubMed ID: 1906013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the role of histidine and tyrosine residues in E. coli asparaginase. Chemical modification and 1H-nuclear magnetic resonance studies.
    Bagert U; Röhm KH
    Biochim Biophys Acta; 1989 Nov; 999(1):36-41. PubMed ID: 2679893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biophysical characterization of two commercially available preparations of the drug containing Escherichia coli L-Asparaginase 2.
    de Araújo TS; Scapin SMN; de Andrade W; Fasciotti M; de Magalhães MTQ; Almeida MS; Lima LMTR
    Biophys Chem; 2021 Apr; 271():106554. PubMed ID: 33607531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A covalently bound catalytic intermediate in Escherichia coli asparaginase: crystal structure of a Thr-89-Val mutant.
    Palm GJ; Lubkowski J; Derst C; Schleper S; Röhm KH; Wlodawer A
    FEBS Lett; 1996 Jul; 390(2):211-6. PubMed ID: 8706862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid residues adjacent to the catalytic cavity of tetramer L-asparaginase II contribute significantly to its catalytic efficiency and thermostability.
    Long S; Zhang X; Rao Z; Chen K; Xu M; Yang T; Yang S
    Enzyme Microb Technol; 2016 Jan; 82():15-22. PubMed ID: 26672444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering the substrate specificity of Escherichia coli asparaginase. II. Selective reduction of glutaminase activity by amino acid replacements at position 248.
    Derst C; Henseling J; Röhm KH
    Protein Sci; 2000 Oct; 9(10):2009-17. PubMed ID: 11106175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that three histidine residues of a base non-specific and adenylic acid preferential ribonuclease from Rhizopus niveus are involved in the catalytic function.
    Ohgi K; Horiuchi H; Watanabe H; Iwama M; Takagi M; Irie M
    J Biochem; 1992 Jul; 112(1):132-8. PubMed ID: 1429502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of stability and enzymatic activity by site-directed mutagenesis of E. coli asparaginase II.
    Verma S; Mehta RK; Maiti P; Röhm KH; Sonawane A
    Biochim Biophys Acta; 2014 Jul; 1844(7):1219-30. PubMed ID: 24721562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the role of conserved residue Asp134 in Escherichia coli ribonuclease HI by site-directed random mutagenesis.
    Haruki M; Noguchi E; Nakai C; Liu YY; Oobatake M; Itaya M; Kanaya S
    Eur J Biochem; 1994 Mar; 220(2):623-31. PubMed ID: 8125123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of catalytic bases in the active site of Escherichia coli methylglyoxal synthase: cloning, expression, and functional characterization of conserved aspartic acid residues.
    Saadat D; Harrison DH
    Biochemistry; 1998 Jul; 37(28):10074-86. PubMed ID: 9665712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of conserved histidine residues in the pyridine nucleotide transhydrogenase of Escherichia coli.
    Bragg PD; Hou C
    Eur J Biochem; 1996 Oct; 241(2):611-8. PubMed ID: 8917463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TK1656, a thermostable l-asparaginase from Thermococcus kodakaraensis, exhibiting highest ever reported enzyme activity.
    Chohan SM; Rashid N
    J Biosci Bioeng; 2013 Oct; 116(4):438-43. PubMed ID: 23648103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic analysis of cAMP-dependent protein kinase: mutations at histidine 87 affect peptide binding and pH dependence.
    Cox S; Taylor SS
    Biochemistry; 1995 Dec; 34(49):16203-9. PubMed ID: 8519778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of a mobile loop at the active site of Escherichia coli asparaginase.
    Aung HP; Bocola M; Schleper S; Röhm KH
    Biochim Biophys Acta; 2000 Sep; 1481(2):349-59. PubMed ID: 11018727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of replacing the conserved active-site residues His-264, Asp-312 and Arg-314 on the binding and catalytic properties of Escherichia coli citrate synthase.
    Man WJ; Li Y; O'Connor CD; Wilton DC
    Biochem J; 1994 Jun; 300 ( Pt 3)(Pt 3):765-70. PubMed ID: 8010958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of surface charge alteration on stability of L-asparaginase II from Escherichia sp.
    Vidya J; Ushasree MV; Pandey A
    Enzyme Microb Technol; 2014 Mar; 56():15-9. PubMed ID: 24564897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity.
    Johnson AR; Dekker EE
    Arch Biochem Biophys; 1998 Mar; 351(1):8-16. PubMed ID: 9500838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.