These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 15215522)

  • 1. Analysis of the "thermodynamic information content" of a Homo sapiens structural database reveals hierarchical thermodynamic organization.
    Larson SA; Hilser VJ
    Protein Sci; 2004 Jul; 13(7):1787-801. PubMed ID: 15215522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic environments in proteins: fundamental determinants of fold specificity.
    Wrabl JO; Larson SA; Hilser VJ
    Protein Sci; 2002 Aug; 11(8):1945-57. PubMed ID: 12142449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic propensities of amino acids in the native state ensemble: implications for fold recognition.
    Wrabl JO; Larson SA; Hilser VJ
    Protein Sci; 2001 May; 10(5):1032-45. PubMed ID: 11316884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Denatured-state energy landscapes of a protein structural database reveal the energetic determinants of a framework model for folding.
    Wang S; Gu J; Larson SA; Whitten ST; Hilser VJ
    J Mol Biol; 2008 Sep; 381(5):1184-201. PubMed ID: 18616947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of negative selection in protein evolution revealed through the energetics of the native state ensemble.
    Hoffmann J; Wrabl JO; Hilser VJ
    Proteins; 2016 Apr; 84(4):435-47. PubMed ID: 26800099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scoring predictive models using a reduced representation of proteins: model and energy definition.
    Fogolari F; Pieri L; Dovier A; Bortolussi L; Giugliarelli G; Corazza A; Esposito G; Viglino P
    BMC Struct Biol; 2007 Mar; 7():15. PubMed ID: 17378941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local-structural diversity and protein folding: application to all-beta off-lattice protein models.
    Pan PW; Gordon HL; Rothstein SM
    J Chem Phys; 2006 Jan; 124(2):024905. PubMed ID: 16422646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs.
    Shamim MT; Anwaruddin M; Nagarajaram HA
    Bioinformatics; 2007 Dec; 23(24):3320-7. PubMed ID: 17989092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the role of the topology in protein folding by computational inverse folding experiments.
    Mucherino A; Costantini S; di Serafino D; D'Apuzzo M; Facchiano A; Colonna G
    Comput Biol Chem; 2008 Aug; 32(4):233-9. PubMed ID: 18479970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of globular proteins. A distance-based data search procedure for the construction of insertion/deletion regions and Pro----non-Pro mutations.
    Summers NL; Karplus M
    J Mol Biol; 1990 Dec; 216(4):991-1016. PubMed ID: 2266566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PCBOST: Protein classification based on structural trees.
    Gordeev AB; Kargatov AM; Efimov AV
    Biochem Biophys Res Commun; 2010 Jul; 397(3):470-1. PubMed ID: 20573601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perceptron learning of pairwise contact energies for proteins incorporating the amino acid environment.
    Heo M; Kim S; Moon EJ; Cheon M; Chung K; Chang I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011906. PubMed ID: 16090000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of protein loop geometries in solution.
    Rapp CS; Strauss T; Nederveen A; Fuentes G
    Proteins; 2007 Oct; 69(1):69-74. PubMed ID: 17588228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of sequence and structure-based datasets for nonredundant structural data mining.
    Chu CK; Feng LL; Wouters MA
    Proteins; 2005 Sep; 60(4):577-83. PubMed ID: 16001417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast protein fold recognition via sequence to structure alignment and contact capacity potentials.
    Alexandrov NN; Nussinov R; Zimmer RM
    Pac Symp Biocomput; 1996; ():53-72. PubMed ID: 9390223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive update of the sequence and structure classification of kinases.
    Cheek S; Ginalski K; Zhang H; Grishin NV
    BMC Struct Biol; 2005 Mar; 5():6. PubMed ID: 15771780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The designability of protein structures.
    Helling R; Li H; Mélin R; Miller J; Wingreen N; Zeng C; Tang C
    J Mol Graph Model; 2001; 19(1):157-67. PubMed ID: 11381527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entropic criteria for protein folding derived from recurrences: six residues patch as the basic protein word.
    Zbilut JP; Chua GH; Krishnan A; Bossa C; Colafranceschi M; Giuliani A
    FEBS Lett; 2006 Sep; 580(20):4861-4. PubMed ID: 16914149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational dynamics and ensembles in protein folding.
    Muñoz V
    Annu Rev Biophys Biomol Struct; 2007; 36():395-412. PubMed ID: 17291180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of protein folding. A lattice model study of the requirements for folding to the native state.
    Sali A; Shakhnovich E; Karplus M
    J Mol Biol; 1994 Feb; 235(5):1614-36. PubMed ID: 8107095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.