These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 15215526)

  • 1. Structural conservation in the major facilitator superfamily as revealed by comparative modeling.
    Vardy E; Arkin IT; Gottschalk KE; Kaback HR; Schuldiner S
    Protein Sci; 2004 Jul; 13(7):1832-40. PubMed ID: 15215526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ins and outs of major facilitator superfamily antiporters.
    Law CJ; Maloney PC; Wang DN
    Annu Rev Microbiol; 2008; 62():289-305. PubMed ID: 18537473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and transport mechanism of the bacterial oxalate transporter OxlT.
    Hirai T; Subramaniam S
    Biophys J; 2004 Nov; 87(5):3600-7. PubMed ID: 15339805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactose permease as a paradigm for membrane transport proteins (Review).
    Abramson J; Iwata S; Kaback HR
    Mol Membr Biol; 2004; 21(4):227-36. PubMed ID: 15371012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of glycerol-3-phosphate transporter suggests a potential 'tilt' mechanism involved in its function.
    Tsigelny IF; Greenberg J; Kouznetsova V; Nigam SK
    J Bioinform Comput Biol; 2008 Oct; 6(5):885-904. PubMed ID: 18942157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport mechanisms in acetylcholine and monoamine storage.
    Parsons SM
    FASEB J; 2000 Dec; 14(15):2423-34. PubMed ID: 11099460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functionally important carboxyls in a bacterial homologue of the vesicular monoamine transporter (VMAT).
    Yaffe D; Vergara-Jaque A; Shuster Y; Listov D; Meena S; Singh SK; Forrest LR; Schuldiner S
    J Biol Chem; 2014 Dec; 289(49):34229-40. PubMed ID: 25336661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural comparison of lactose permease and the glycerol-3-phosphate antiporter: members of the major facilitator superfamily.
    Abramson J; Kaback HR; Iwata S
    Curr Opin Struct Biol; 2004 Aug; 14(4):413-9. PubMed ID: 15313234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vesicular transporters join the major facilitator superfamily (MFS).
    Linial M
    Trends Biochem Sci; 1993 Jul; 18(7):248-9. PubMed ID: 8212132
    [No Abstract]   [Full Text] [Related]  

  • 10. Eukaryotic major facilitator superfamily transporter modeling based on the prokaryotic GlpT crystal structure.
    Lemieux MJ
    Mol Membr Biol; 2007; 24(5-6):333-41. PubMed ID: 17710637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence of evolutionary conservation of function between the thyroxine transporter Oatp1c1 and major facilitator superfamily members.
    Westholm DE; Marold JD; Viken KJ; Duerst AH; Anderson GW; Rumbley JN
    Endocrinology; 2010 Dec; 151(12):5941-51. PubMed ID: 20881245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of bacterial drug antiporters homologous to mammalian neurotransmitter transporters.
    Vardy E; Steiner-Mordoch S; Schuldiner S
    J Bacteriol; 2005 Nov; 187(21):7518-25. PubMed ID: 16237035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasma membrane monoamine transporters: structure, regulation and function.
    Torres GE; Gainetdinov RR; Caron MG
    Nat Rev Neurosci; 2003 Jan; 4(1):13-25. PubMed ID: 12511858
    [No Abstract]   [Full Text] [Related]  

  • 14. Structural advances for the major facilitator superfamily (MFS) transporters.
    Yan N
    Trends Biochem Sci; 2013 Mar; 38(3):151-9. PubMed ID: 23403214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Sequence-Function Analysis of the Major Facilitator Superfamily: The "Mix-and-Match" Method.
    Madej MG
    Methods Enzymol; 2015; 557():521-49. PubMed ID: 25950980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling, docking, and simulation of the major facilitator superfamily.
    Holyoake J; Caulfeild V; Baldwin SA; Sansom MS
    Biophys J; 2006 Nov; 91(10):L84-6. PubMed ID: 16980356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of drug/H+ antiport: complete cysteine-scanning mutagenesis and the protein engineering approach.
    Tamura N; Konishi S; Yamaguchi A
    Curr Opin Chem Biol; 2003 Oct; 7(5):570-9. PubMed ID: 14580560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helix dynamics in a membrane transport protein: comparative simulations of the glycerol-3-phosphate transporter and its constituent helices.
    D'Rozario RS; Sansom MS
    Mol Membr Biol; 2008 Sep; 25(6-7):571-83. PubMed ID: 19037818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion binding and internal hydration in the multidrug resistance secondary active transporter NorM investigated by molecular dynamics simulations.
    Vanni S; Campomanes P; Marcia M; Rothlisberger U
    Biochemistry; 2012 Feb; 51(6):1281-7. PubMed ID: 22295886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gastrin induces expression and promoter activity of the vesicular monoamine transporter subtype 2.
    Gerhard M; Neumayer N; Presecan-Siedel E; Zanner R; Lengyel E; Cramer T; Höcker M; Prinz C
    Endocrinology; 2001 Aug; 142(8):3663-72. PubMed ID: 11459816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.