These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. State and phase transition behaviors of quercus rubra seed axes and cotyledonary tissues: relevance to the desiccation sensitivity and cryopreservation of recalcitrant seeds. Sun WQ Cryobiology; 1999 Jun; 38(4):372-85. PubMed ID: 10413579 [TBL] [Abstract][Full Text] [Related]
9. Cryopreservation, encapsulation and promotion of shoot production of embryonic axes of a recalcitrant species Ekebergia capensis, Sparrm. Perán R; Berjak P; Pammenter NW; Kioko JI Cryo Letters; 2006; 27(1):5-16. PubMed ID: 16691305 [TBL] [Abstract][Full Text] [Related]
10. Thermal analysis of the plant encapsulation-dehydration cryopreservation protocol using silica gel as the desiccant. Sherlock G; Block W; Benson EE Cryo Letters; 2005; 26(1):45-54. PubMed ID: 15772712 [TBL] [Abstract][Full Text] [Related]
11. A theoretical model of intracellular devitrification. Karlsson JO Cryobiology; 2001 May; 42(3):154-69. PubMed ID: 11578115 [TBL] [Abstract][Full Text] [Related]
12. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures. Wesley-Smith J; Berjak P; Pammenter NW; Walters C Ann Bot; 2014 Mar; 113(4):695-709. PubMed ID: 24368198 [TBL] [Abstract][Full Text] [Related]
13. Desiccation and freezing tolerance of embryonic axes from Citrus sinensis [L.] osb. pretreated with sucrose. Santos IR; Stushnoff C Cryo Letters; 2003; 24(5):281-92. PubMed ID: 14566388 [TBL] [Abstract][Full Text] [Related]
14. Cryopreservation of Citrus aurantifolia seeds and embryonic axes using a desiccation protocol. Cho EG; Noor NM; Kim HH; Rao VR; Engelmann F Cryo Letters; 2002; 23(5):309-16. PubMed ID: 12447490 [TBL] [Abstract][Full Text] [Related]
15. Cryopreservation of lipid-rich seeds: effect of moisture content and cooling rate on germination. González-Benito EM; Pérez-García F Cryo Letters; 2001; 22(2):135-40. PubMed ID: 11788852 [TBL] [Abstract][Full Text] [Related]
16. New determinants for tolerance of coffee (Coffea arabica L.) seeds to liquid nitrogen exposure. Dussert S; Engelmann F Cryo Letters; 2006; 27(3):169-78. PubMed ID: 16892165 [TBL] [Abstract][Full Text] [Related]
17. Why is intracellular ice lethal? A microscopical study showing evidence of programmed cell death in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum. Wesley-Smith J; Walters C; Pammenter NW; Berjak P Ann Bot; 2015 May; 115(6):991-1000. PubMed ID: 25808653 [TBL] [Abstract][Full Text] [Related]
18. Warming by immersion or exercise affects initial cooling rate during subsequent cold water immersion. Scott CG; Ducharme MB; Haman F; Kenny GP Aviat Space Environ Med; 2004 Nov; 75(11):956-63. PubMed ID: 15558995 [TBL] [Abstract][Full Text] [Related]
19. Cryopreservation of Salix species using sections from winter vegetative scions. Towill LE; Widrlechner M Cryo Letters; 2004; 25(1):71-80. PubMed ID: 15031747 [TBL] [Abstract][Full Text] [Related]
20. Increased drying rate lowers the critical water content for survival in embryonic axes of English oak (Quercus robur L.) seeds. Ntuli TM; Finch-Savage WE; Berjak P; Pammenter NW J Integr Plant Biol; 2011 Apr; 53(4):270-80. PubMed ID: 21205182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]