These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 15216394)

  • 1. The influence of water content, cooling and warming rate upon survival of embryonic axes of Poncirus trifoliata (L.).
    Wesley-Smith J; Walters C; Berjak P; Pammenter NW
    Cryo Letters; 2004; 25(2):129-38. PubMed ID: 15216394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-equilibrium cooling of Poncirus trifoliata (L.) embryonic axes at various water contents.
    Wesley-Smith J; Walters C; Berjak P; Pammenter NW
    Cryo Letters; 2004; 25(2):121-8. PubMed ID: 15216393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions among water content, rapid (nonequilibrium) cooling to -196 degrees C, and survival of embryonic axes of Aesculus hippocastanum L. seeds.
    Wesley-Smith J; Walters C; Pammenter NW; Berjak P
    Cryobiology; 2001 May; 42(3):196-206. PubMed ID: 11578119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of desiccation and exposure to cryogenic temperatures on embryonic axes of Landolphia kirkii.
    Kistnasamy P; Berjak P; Pammenter NW
    Cryo Letters; 2011; 32(1):28-39. PubMed ID: 21468451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Desiccation sensitivity and cryopreservation of excised embryonic axes of Citrus suhuiensis cv. limau madu, Citrumelo [Citrus paradisi macf. × Poncirus trifoliata (l.) raf.] and Fortunella polyandra.
    Al Zoubi OM; Normah MN
    Cryo Letters; 2012; 33(3):241-51. PubMed ID: 22825791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryopreservation of Quercus suber and Quercus ilex embryonic axes: in vitro culture, desiccation and cooling factors.
    Gonzalez-Benito ME; Prieto RM; Herradon E; Martin C
    Cryo Letters; 2002; 23(5):283-90. PubMed ID: 12447487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryopreservation of embryonic axes of selected amaryllid species.
    Sershen ; Pammenter NW; Berjak P; Wesley-Smith J
    Cryo Letters; 2007; 28(5):387-99. PubMed ID: 18075707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. State and phase transition behaviors of quercus rubra seed axes and cotyledonary tissues: relevance to the desiccation sensitivity and cryopreservation of recalcitrant seeds.
    Sun WQ
    Cryobiology; 1999 Jun; 38(4):372-85. PubMed ID: 10413579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryopreservation, encapsulation and promotion of shoot production of embryonic axes of a recalcitrant species Ekebergia capensis, Sparrm.
    Perán R; Berjak P; Pammenter NW; Kioko JI
    Cryo Letters; 2006; 27(1):5-16. PubMed ID: 16691305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal analysis of the plant encapsulation-dehydration cryopreservation protocol using silica gel as the desiccant.
    Sherlock G; Block W; Benson EE
    Cryo Letters; 2005; 26(1):45-54. PubMed ID: 15772712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theoretical model of intracellular devitrification.
    Karlsson JO
    Cryobiology; 2001 May; 42(3):154-69. PubMed ID: 11578115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures.
    Wesley-Smith J; Berjak P; Pammenter NW; Walters C
    Ann Bot; 2014 Mar; 113(4):695-709. PubMed ID: 24368198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Desiccation and freezing tolerance of embryonic axes from Citrus sinensis [L.] osb. pretreated with sucrose.
    Santos IR; Stushnoff C
    Cryo Letters; 2003; 24(5):281-92. PubMed ID: 14566388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryopreservation of Citrus aurantifolia seeds and embryonic axes using a desiccation protocol.
    Cho EG; Noor NM; Kim HH; Rao VR; Engelmann F
    Cryo Letters; 2002; 23(5):309-16. PubMed ID: 12447490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryopreservation of lipid-rich seeds: effect of moisture content and cooling rate on germination.
    González-Benito EM; Pérez-García F
    Cryo Letters; 2001; 22(2):135-40. PubMed ID: 11788852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New determinants for tolerance of coffee (Coffea arabica L.) seeds to liquid nitrogen exposure.
    Dussert S; Engelmann F
    Cryo Letters; 2006; 27(3):169-78. PubMed ID: 16892165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Why is intracellular ice lethal? A microscopical study showing evidence of programmed cell death in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum.
    Wesley-Smith J; Walters C; Pammenter NW; Berjak P
    Ann Bot; 2015 May; 115(6):991-1000. PubMed ID: 25808653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Warming by immersion or exercise affects initial cooling rate during subsequent cold water immersion.
    Scott CG; Ducharme MB; Haman F; Kenny GP
    Aviat Space Environ Med; 2004 Nov; 75(11):956-63. PubMed ID: 15558995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryopreservation of Salix species using sections from winter vegetative scions.
    Towill LE; Widrlechner M
    Cryo Letters; 2004; 25(1):71-80. PubMed ID: 15031747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased drying rate lowers the critical water content for survival in embryonic axes of English oak (Quercus robur L.) seeds.
    Ntuli TM; Finch-Savage WE; Berjak P; Pammenter NW
    J Integr Plant Biol; 2011 Apr; 53(4):270-80. PubMed ID: 21205182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.