These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 15217155)

  • 1. Monitoring of stress responses.
    Schweder T; Hecker M
    Adv Biochem Eng Biotechnol; 2004; 89():47-71. PubMed ID: 15217155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacillus subtilis during feast and famine: visualization of the overall regulation of protein synthesis during glucose starvation by proteome analysis.
    Bernhardt J; Weibezahn J; Scharf C; Hecker M
    Genome Res; 2003 Feb; 13(2):224-37. PubMed ID: 12566400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A proteomic view of cell physiology of Bacillus subtilis--bringing the genome sequence to life.
    Hecker M
    Adv Biochem Eng Biotechnol; 2003; 83():57-92. PubMed ID: 12934926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular components of physiological stress responses in Escherichia coli.
    Wick LM; Egli T
    Adv Biochem Eng Biotechnol; 2004; 89():1-45. PubMed ID: 15217154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioprocess monitoring by marker gene analysis.
    Schweder T
    Biotechnol J; 2011 Aug; 6(8):926-33. PubMed ID: 21786424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of an electric DNA-chip for the expression analysis of bioprocess-relevant marker genes of Bacillus subtilis.
    Jürgen B; Barken KB; Tobisch S; Pioch D; Wümpelmann M; Hecker M; Schweder T
    Biotechnol Bioeng; 2005 Nov; 92(3):299-307. PubMed ID: 16180240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress induced by recombinant protein production in Escherichia coli.
    Hoffmann F; Rinas U
    Adv Biochem Eng Biotechnol; 2004; 89():73-92. PubMed ID: 15217156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microarray-based antibiotic screen identifies a regulatory role for supercoiling in the osmotic stress response of Escherichia coli.
    Cheung KJ; Badarinarayana V; Selinger DW; Janse D; Church GM
    Genome Res; 2003 Feb; 13(2):206-15. PubMed ID: 12566398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide mRNA profiling in glucose starved Bacillus subtilis cells.
    Koburger T; Weibezahn J; Bernhardt J; Homuth G; Hecker M
    Mol Genet Genomics; 2005 Aug; 274(1):1-12. PubMed ID: 15809868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis and control of proteolysis of recombinant proteins in Escherichia coli.
    Rozkov A; Enfors SO
    Adv Biochem Eng Biotechnol; 2004; 89():163-95. PubMed ID: 15217159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards a comprehensive understanding of Bacillus subtilis cell physiology by physiological proteomics.
    Hecker M; Völker U
    Proteomics; 2004 Dec; 4(12):3727-50. PubMed ID: 15540212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion.
    Deuerling E; Mogk A; Richter C; Purucker M; Schumann W
    Mol Microbiol; 1997 Mar; 23(5):921-33. PubMed ID: 9076729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global expression profiling of Bacillus subtilis cells during industrial-close fed-batch fermentations with different nitrogen sources.
    Jürgen B; Tobisch S; Wümpelmann M; Gördes D; Koch A; Thurow K; Albrecht D; Hecker M; Schweder T
    Biotechnol Bioeng; 2005 Nov; 92(3):277-98. PubMed ID: 16178035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inclusion bodies: formation and utilisation.
    Fahnert B; Lilie H; Neubauer P
    Adv Biochem Eng Biotechnol; 2004; 89():93-142. PubMed ID: 15217157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of heat-shock chaperones in the production of recombinant proteins in Escherichia coli.
    Hoffmann F; Rinas U
    Adv Biochem Eng Biotechnol; 2004; 89():143-61. PubMed ID: 15217158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions of individual σB-dependent general stress genes to oxidative stress resistance of Bacillus subtilis.
    Reder A; Höper D; Gerth U; Hecker M
    J Bacteriol; 2012 Jul; 194(14):3601-10. PubMed ID: 22582280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global transcriptional response of Bacillus subtilis to heat shock.
    Helmann JD; Wu MF; Kobel PA; Gamo FJ; Wilson M; Morshedi MM; Navre M; Paddon C
    J Bacteriol; 2001 Dec; 183(24):7318-28. PubMed ID: 11717291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A proteomic view of cell physiology of the industrial workhorse Bacillus licheniformis.
    Voigt B; Schroeter R; Schweder T; Jürgen B; Albrecht D; van Dijl JM; Maurer KH; Hecker M
    J Biotechnol; 2014 Dec; 191():139-49. PubMed ID: 25011098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From genomics via proteomics to cellular physiology of the Gram-positive model organism Bacillus subtilis.
    Völker U; Hecker M
    Cell Microbiol; 2005 Aug; 7(8):1077-85. PubMed ID: 16008575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide transcriptional analysis of the phosphate starvation stimulon of Bacillus subtilis.
    Allenby NE; O'Connor N; Prágai Z; Ward AC; Wipat A; Harwood CR
    J Bacteriol; 2005 Dec; 187(23):8063-80. PubMed ID: 16291680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.