These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 15218049)

  • 1. Cortical neuromagnetic fields preceding voluntary jaw movements.
    Shibukawa Y; Shintani M; Kumai T; Suzuki T; Nakamura Y
    J Dent Res; 2004 Jul; 83(7):572-7. PubMed ID: 15218049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromagnetic fields accompanying unilateral and bilateral voluntary movements: topography and analysis of cortical sources.
    Kristeva R; Cheyne D; Deecke L
    Electroencephalogr Clin Neurophysiol; 1991 Aug; 81(4):284-98. PubMed ID: 1714823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of human motor readiness field linked to left middle frontal gyrus by MEG and PET.
    Pedersen JR; Johannsen P; Bak CK; Kofoed B; Saermark K; Gjedde A
    Neuroimage; 1998 Aug; 8(2):214-20. PubMed ID: 9740763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human slow cortical potential in association with voluntary jaw movements.
    Takasoh T; Enomoto S; Ohashi I; Nakamura Y
    J Med Dent Sci; 1998 Sep; 45(3):195-204. PubMed ID: 11186211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical distribution of Bereitschaftspotential and negative slope potential preceding mouth-opening movements in humans.
    Yoshida K; Kaji R; Hamano T; Kohara N; Kimura J; Iizuka T
    Arch Oral Biol; 1999 Feb; 44(2):183-90. PubMed ID: 10206336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Movement-related cortical magnetic fields associated with self-paced tongue protrusion in humans.
    Maezawa H; Oguma H; Hirai Y; Hisadome K; Shiraishi H; Funahashi M
    Neurosci Res; 2017 Apr; 117():22-27. PubMed ID: 27888072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isotonic resistance jaw exercise alters jaw muscle coordination during jaw movements.
    Wirianski A; Deall S; Whittle T; Wong M; Murray GM; Peck CC
    J Oral Rehabil; 2014 May; 41(5):353-66. PubMed ID: 24612288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetric activation of motor cortex controlling human anterior digastric muscles during speech and target-directed jaw movements.
    Sowman PF; Flavel SC; McShane CL; Sakuma S; Miles TS; Nordstrom MA
    J Neurophysiol; 2009 Jul; 102(1):159-66. PubMed ID: 19420123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor cortex activity and predicting side of movement: neural network and dipole analysis of pre-movement magnetic fields.
    Cheyne D; Weinberg H; Gaetz W; Jantzen KJ
    Neurosci Lett; 1995 Mar; 188(2):81-4. PubMed ID: 7792062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Movement-related slow cortical magnetic fields and changes of spontaneous MEG- and EEG-brain rhythms.
    Nagamine T; Kajola M; Salmelin R; Shibasaki H; Hari R
    Electroencephalogr Clin Neurophysiol; 1996 Sep; 99(3):274-86. PubMed ID: 8862117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuromagnetic analysis of the late phase of the readiness field for precise hand movements using magnetoencephalography.
    Takahashi M; Watanabe Y; Haraguchi T; Kawai T; Yamane GY; Abe S; Sakiyama K; Hiraide Y; Lee WH; Ide Y; Ishikawa T
    Bull Tokyo Dent Coll; 2004 Feb; 45(1):9-17. PubMed ID: 15346880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical potentials associated with voluntary biting movement in humans.
    Nakajima I; Tanaka Y; Uchida A; Sakai T; Akasaka M; Mori A; Sumino R
    Neurosci Res; 1991 May; 10(4):285-9. PubMed ID: 1652723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Modulation of the jaw muscle activity during the rhythmical jaw movement by stimulation of the cortical masticatory area and amygdala in the rabbit].
    Furuta A; Murakami T
    Shigaku; 1989 Aug; 77(2):607-17. PubMed ID: 2489314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical potentials associated with voluntary mandibular movements.
    Yoshida K; Kaji R; Hamano T; Kohara N; Kimura J; Shibasaki H; Iizuka T
    J Dent Res; 2000 Jul; 79(7):1514-8. PubMed ID: 11005737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organization of cortical processing for facial movements during licking in cats.
    Hiraba H; Sato T; Saito K; Iwakami T; Mizoguchi N; Fukano M; Ueda K
    Somatosens Mot Res; 2007 Sep; 24(3):115-26. PubMed ID: 17853054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical magnetic and electric fields associated with voluntary finger movements.
    Nagamine T; Toro C; Balish M; Deuschl G; Wang B; Sato S; Shibasaki H; Hallett M
    Brain Topogr; 1994; 6(3):175-83. PubMed ID: 8204404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sniffing-related motor cortical potential: topography and possible generators.
    Jeran J; Koritnik B; Zidar I; Belič A; Zidar J
    Respir Physiol Neurobiol; 2013 Jan; 185(2):249-56. PubMed ID: 23078972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Movement-related cortical potentials before jaw excursions in oromandibular dystonia.
    Yoshida K; Kaji R; Kohara N; Murase N; Ikeda A; Shibasaki H; Iizuka T
    Mov Disord; 2003 Jan; 18(1):94-100. PubMed ID: 12518306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrode fusion for the prediction of self-initiated fine movements from single-trial readiness potentials.
    Abou Zeid E; Chau T
    Int J Neural Syst; 2015 Jun; 25(4):1550014. PubMed ID: 25903225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of motor and sensory brain activities during unilateral finger movement: spatiotemporal source analysis of movement-associated magnetic fields.
    Hoshiyama M; Kakigi R; Berg P; Koyama S; Kitamura Y; Shimojo M; Watanabe S; Nakamura A
    Exp Brain Res; 1997 Jun; 115(1):6-14. PubMed ID: 9224829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.