These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Synaptic plasticity in local cortical network in vivo and its modulation by the level of neuronal activity. Crochet S; Fuentealba P; Cissé Y; Timofeev I; Steriade M Cereb Cortex; 2006 May; 16(5):618-31. PubMed ID: 16049189 [TBL] [Abstract][Full Text] [Related]
4. Dynamic patterns of brain cell assemblies. IV. Mixed systems. Oscillating fields and pulse distributions. Relation of neuronal waves to EEG. Elul R Neurosci Res Program Bull; 1974 Mar; 12(1):97-101. PubMed ID: 4367513 [No Abstract] [Full Text] [Related]
7. A computational framework for cortical learning. Suri RE Biol Cybern; 2004 Jun; 90(6):400-9. PubMed ID: 15316786 [TBL] [Abstract][Full Text] [Related]
8. Implications of synaptic biophysics for recurrent network dynamics and active memory. Durstewitz D Neural Netw; 2009 Oct; 22(8):1189-200. PubMed ID: 19647396 [TBL] [Abstract][Full Text] [Related]
9. [Formation of cortical cell assemblies--synaptic plasticity and beyond]. Fukai T; Kang S; Kitano K; Teramae JN Brain Nerve; 2008 Jul; 60(7):763-70. PubMed ID: 18646616 [TBL] [Abstract][Full Text] [Related]
10. Spike-rate adaptation and neuronal bursting in a mean-field model of brain activity. Loxley PN; Robinson PA Biol Cybern; 2007 Aug; 97(2):113-22. PubMed ID: 17473929 [TBL] [Abstract][Full Text] [Related]
11. Cooperation of spike timing-dependent and heterosynaptic plasticities in neural networks: a Fokker-Planck approach. Zhu L; Lai YC; Hoppensteadt FC; He J Chaos; 2006 Jun; 16(2):023105. PubMed ID: 16822008 [TBL] [Abstract][Full Text] [Related]
12. Oscillations and spiking pairs: behavior of a neuronal model with STDP learning. Shen X; Lin X; De Wilde P Neural Comput; 2008 Aug; 20(8):2037-69. PubMed ID: 18336082 [TBL] [Abstract][Full Text] [Related]
13. Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Hasenstaub A; Shu Y; Haider B; Kraushaar U; Duque A; McCormick DA Neuron; 2005 Aug; 47(3):423-35. PubMed ID: 16055065 [TBL] [Abstract][Full Text] [Related]
14. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking. Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559 [TBL] [Abstract][Full Text] [Related]
15. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Fries P Trends Cogn Sci; 2005 Oct; 9(10):474-80. PubMed ID: 16150631 [TBL] [Abstract][Full Text] [Related]
16. Neural synchrony and the development of cortical networks. Uhlhaas PJ; Roux F; Rodriguez E; Rotarska-Jagiela A; Singer W Trends Cogn Sci; 2010 Feb; 14(2):72-80. PubMed ID: 20080054 [TBL] [Abstract][Full Text] [Related]
17. A learning rule for place fields in a cortical model: theta phase precession as a network effect. Scarpetta S; Marinaro M Hippocampus; 2005; 15(7):979-89. PubMed ID: 16161059 [TBL] [Abstract][Full Text] [Related]
18. [Acquiring new information in a neuronal network: from Hebb's concept to homeostatic plasticity]. Le Roux N; Amar M; Fossier P J Soc Biol; 2008; 202(2):143-60. PubMed ID: 18547512 [TBL] [Abstract][Full Text] [Related]
19. Network reorganization driven by temporal interdependence of its elements. Waddell J; Zochowski M Chaos; 2006 Jun; 16(2):023106. PubMed ID: 16822009 [TBL] [Abstract][Full Text] [Related]
20. Spatio-temporal dynamics of oscillatory network activity in the neonatal mouse cerebral cortex. Sun JJ; Luhmann HJ Eur J Neurosci; 2007 Oct; 26(7):1995-2004. PubMed ID: 17868367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]