BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 15219245)

  • 1. Modelling the internal field distribution in human erythrocytes exposed to MW radiation.
    Sebastián JL; Muñoz San Martín S; Sancho M; Miranda JM
    Bioelectrochemistry; 2004 Aug; 64(1):39-45. PubMed ID: 15219245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of the electric field distribution in erythrocyte and rod shape cells from direct RF exposure.
    Muñoz San MS; Sebastián JL; Sancho M; Miranda JM
    Phys Med Biol; 2003 Jun; 48(11):1649-59. PubMed ID: 12817943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of radiofrequency energy stored in the altered shapes: Stomatocyte-echinocyte of human erythrocytes.
    Muñoz S; Sebastián JL; Sancho M; Martínez G
    Bioelectrochemistry; 2010 Feb; 77(2):158-61. PubMed ID: 19665436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric field distribution and energy absorption in anisotropic and dispersive red blood cells.
    Sebastián JL; Muñoz S; Sancho M; Alvarez G; Miranda JM
    Phys Med Biol; 2007 Dec; 52(23):6831-47. PubMed ID: 18029978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmembrane voltage induced on altered erythrocyte shapes exposed to RF fields.
    Muñoz S; Sebastián JL; Sancho M; Miranda JM
    Bioelectromagnetics; 2004 Dec; 25(8):631-3. PubMed ID: 15515030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling assemblies of biological cells exposed to electric fields.
    Fear EC; Stuchly MA
    IEEE Trans Biomed Eng; 1998 Oct; 45(10):1259-71. PubMed ID: 9775540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the influence of the cell geometry, orientation and cell proximity effects on the electric field distribution from direct RF exposure.
    Sebastián JL; Muñoz S; Sancho M; Miranda JM
    Phys Med Biol; 2001 Jan; 46(1):213-25. PubMed ID: 11197673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential distribution for a spheroidal cell having a conductive membrane in an electric field.
    Jerry RA; Popel AS; Brownell WE
    IEEE Trans Biomed Eng; 1996 Sep; 43(9):970-2. PubMed ID: 9214813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of the internal fields distribution in human inner hearing system exposed to 900 and 1800 MHz.
    Parazzini M; Tognola G; Franzoni C; Grandori F; Ravazzani P
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):39-48. PubMed ID: 17260854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Second-order model of membrane electric field induced by alternating external electric fields.
    Kotnik T; Miklavcic D
    IEEE Trans Biomed Eng; 2000 Aug; 47(8):1074-81. PubMed ID: 10943056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Influence of ultra-high electromagnetic irradiation on the electrophoretic mobility of erythrocytes].
    Ismailov ESh
    Biofizika; 1977; 22(3):493-8. PubMed ID: 889910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz.
    Findlay RP; Dimbylow PJ
    Phys Med Biol; 2006 May; 51(9):2339-52. PubMed ID: 16625046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-linear dependence of the dielectric properties of chick embryo myoblast membranes exposed to a sinusoidal 50 Hz magnetic field.
    Grandolfo M; Santini MT; Vecchia P; Bonincontro A; Cametti C; Indovina PL
    Int J Radiat Biol; 1991 Dec; 60(6):877-90. PubMed ID: 1682400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model of cell electromagnetic susceptibility associated with the membrane electric field.
    Arber S
    Physiol Chem Phys Med NMR; 1986; 18(1):49-51. PubMed ID: 3774896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cylindrical cell membranes in uniform applied electric fields: validation of a transport lattice method.
    Stewart DA; Gowrishankar TR; Smith KC; Weaver JC
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1643-53. PubMed ID: 16235650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the electric field induced forces in erythrocyte membrane pores using a realistic cell model.
    Sebastián JL; Muñoz S; Sancho M; Miranda JM
    Phys Med Biol; 2006 Dec; 51(23):6213-24. PubMed ID: 17110781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical study of the electrical conductivity and polarization in a suspension of spherical cells.
    Ramos A; Suzuki DO; Marques JL
    Bioelectrochemistry; 2006 May; 68(2):213-7. PubMed ID: 16256446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parametric dependence of SAR on permittivity values in a man model.
    Gajsek P; Hurt WD; Ziriax JM; Mason PA
    IEEE Trans Biomed Eng; 2001 Oct; 48(10):1169-77. PubMed ID: 11585041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model of a confined spherical cell in uniform and heterogeneous applied electric fields.
    Gowrishankar TR; Stewart DA; Weaver JC
    Bioelectrochemistry; 2006 May; 68(2):181-90. PubMed ID: 16230052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromagnetic radiation from ingested sources in the human intestine between 150 MHz and 1.2 GHz.
    Chirwa LC; Hammond PA; Roy S; Cumming DR
    IEEE Trans Biomed Eng; 2003 Apr; 50(4):484-92. PubMed ID: 12723060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.