These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 15219402)

  • 1. The impacts of the AOC concentration on biofilm formation under higher shear force condition.
    Tsai YP; Pai TY; Qiu JM
    J Biotechnol; 2004 Jul; 111(2):155-67. PubMed ID: 15219402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of biofilm formation at different assimilable organic carbon concentrations under lower flow velocity condition.
    Tsai YP
    J Basic Microbiol; 2005; 45(6):475-85. PubMed ID: 16304710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions.
    Horn H; Reiff H; Morgenroth E
    Biotechnol Bioeng; 2003 Mar; 81(5):607-17. PubMed ID: 12514810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of humic substances in regrowth.
    Camper AK
    Int J Food Microbiol; 2004 May; 92(3):355-64. PubMed ID: 15145594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of flow velocity on the dynamic behaviour of biofilm bacteria.
    Tsai YP
    Biofouling; 2005; 21(5-6):267-77. PubMed ID: 16522540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of chlorine concentration and shear stress on chlorine consumption, biofilm growth rate and particle number.
    Tsai YP
    Bioresour Technol; 2006 Oct; 97(15):1912-9. PubMed ID: 16202580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring local flow velocities and biofilm structure in biofilm systems with magnetic resonance imaging (MRI).
    Manz B; Volke F; Goll D; Horn H
    Biotechnol Bioeng; 2003 Nov; 84(4):424-32. PubMed ID: 14574699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofilms formed on humic substances: response to flow conditions and carbon concentrations.
    Rodrigues AL; Pereira MA; Janknecht P; Brito AG; Nogueira R
    Bioresour Technol; 2010 Sep; 101(18):6888-94. PubMed ID: 20413305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of chlorine, biodegradable dissolved organic carbon and suspended bacteria on biofilm development in drinking water systems.
    Codony F; Morato J; Ribas F; Mas J
    J Basic Microbiol; 2002; 42(5):311-9. PubMed ID: 12362402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of UV/H2O2 treatment on biofilm formation potential.
    Metz DH; Reynolds K; Meyer M; Dionysiou DD
    Water Res; 2011 Jan; 45(2):497-508. PubMed ID: 20932545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of detachment on substrate removal and microbial ecology in a heterotrophic/autotrophic biofilm.
    Elenter D; Milferstedt K; Zhang W; Hausner M; Morgenroth E
    Water Res; 2007 Dec; 41(20):4657-71. PubMed ID: 17655911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Population dynamics and in situ kinetics of nitrifying bacteria in autotrophic nitrifying biofilms as determined by real-time quantitative PCR.
    Kindaichi T; Kawano Y; Ito T; Satoh H; Okabe S
    Biotechnol Bioeng; 2006 Aug; 94(6):1111-21. PubMed ID: 16596626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of wall shear rate on biofilm deposition and grazing in drinking water flow chambers.
    Paris T; Skali-Lami S; Block JC
    Biotechnol Bioeng; 2007 Aug; 97(6):1550-61. PubMed ID: 17216655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth model and metabolic activity of brewing yeast biofilm on the surface of spent grains: a biocatalyst for continuous beer fermentation.
    Brányik T; Vicente AA; Kuncová G; Podrazký O; Dostálek P; Teixeira JA
    Biotechnol Prog; 2004; 20(6):1733-40. PubMed ID: 15575706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions.
    Mampel J; Spirig T; Weber SS; Haagensen JA; Molin S; Hilbi H
    Appl Environ Microbiol; 2006 Apr; 72(4):2885-95. PubMed ID: 16597995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linearized kinetic model of Listeria monocytogenes biofilm growth.
    Takhistov P; George B
    Bioprocess Biosyst Eng; 2004 Jul; 26(4):259-70. PubMed ID: 15179574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Film analysis of activated sludge microbial discs by the Taguchi method and grey relational analysis.
    Chen MY; Syu MJ
    Bioprocess Biosyst Eng; 2003 Dec; 26(2):83-92. PubMed ID: 14574549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D finite element model of biofilm detachment using real biofilm structures from CLSM data.
    Böl M; Möhle RB; Haesner M; Neu TR; Horn H; Krull R
    Biotechnol Bioeng; 2009 May; 103(1):177-86. PubMed ID: 19191328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic treatment of complex chemical wastewater in a sequencing batch biofilm reactor: process optimization and evaluation of factor interactions using the Taguchi dynamic DOE methodology.
    Venkata Mohan S; Chandrasekhara Rao N; Krishna Prasad K; Murali Krishna P; Sreenivas Rao R; Sarma PN
    Biotechnol Bioeng; 2005 Jun; 90(6):732-45. PubMed ID: 15812798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of microbial regrowth potential by assimilable organic carbon in various reclaimed water and distribution systems.
    Thayanukul P; Kurisu F; Kasuga I; Furumai H
    Water Res; 2013 Jan; 47(1):225-32. PubMed ID: 23134741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.