BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 15219402)

  • 1. The impacts of the AOC concentration on biofilm formation under higher shear force condition.
    Tsai YP; Pai TY; Qiu JM
    J Biotechnol; 2004 Jul; 111(2):155-67. PubMed ID: 15219402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of biofilm formation at different assimilable organic carbon concentrations under lower flow velocity condition.
    Tsai YP
    J Basic Microbiol; 2005; 45(6):475-85. PubMed ID: 16304710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions.
    Horn H; Reiff H; Morgenroth E
    Biotechnol Bioeng; 2003 Mar; 81(5):607-17. PubMed ID: 12514810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of humic substances in regrowth.
    Camper AK
    Int J Food Microbiol; 2004 May; 92(3):355-64. PubMed ID: 15145594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of flow velocity on the dynamic behaviour of biofilm bacteria.
    Tsai YP
    Biofouling; 2005; 21(5-6):267-77. PubMed ID: 16522540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of chlorine concentration and shear stress on chlorine consumption, biofilm growth rate and particle number.
    Tsai YP
    Bioresour Technol; 2006 Oct; 97(15):1912-9. PubMed ID: 16202580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring local flow velocities and biofilm structure in biofilm systems with magnetic resonance imaging (MRI).
    Manz B; Volke F; Goll D; Horn H
    Biotechnol Bioeng; 2003 Nov; 84(4):424-32. PubMed ID: 14574699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofilms formed on humic substances: response to flow conditions and carbon concentrations.
    Rodrigues AL; Pereira MA; Janknecht P; Brito AG; Nogueira R
    Bioresour Technol; 2010 Sep; 101(18):6888-94. PubMed ID: 20413305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of chlorine, biodegradable dissolved organic carbon and suspended bacteria on biofilm development in drinking water systems.
    Codony F; Morato J; Ribas F; Mas J
    J Basic Microbiol; 2002; 42(5):311-9. PubMed ID: 12362402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of UV/H2O2 treatment on biofilm formation potential.
    Metz DH; Reynolds K; Meyer M; Dionysiou DD
    Water Res; 2011 Jan; 45(2):497-508. PubMed ID: 20932545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of detachment on substrate removal and microbial ecology in a heterotrophic/autotrophic biofilm.
    Elenter D; Milferstedt K; Zhang W; Hausner M; Morgenroth E
    Water Res; 2007 Dec; 41(20):4657-71. PubMed ID: 17655911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Population dynamics and in situ kinetics of nitrifying bacteria in autotrophic nitrifying biofilms as determined by real-time quantitative PCR.
    Kindaichi T; Kawano Y; Ito T; Satoh H; Okabe S
    Biotechnol Bioeng; 2006 Aug; 94(6):1111-21. PubMed ID: 16596626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of wall shear rate on biofilm deposition and grazing in drinking water flow chambers.
    Paris T; Skali-Lami S; Block JC
    Biotechnol Bioeng; 2007 Aug; 97(6):1550-61. PubMed ID: 17216655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth model and metabolic activity of brewing yeast biofilm on the surface of spent grains: a biocatalyst for continuous beer fermentation.
    Brányik T; Vicente AA; Kuncová G; Podrazký O; Dostálek P; Teixeira JA
    Biotechnol Prog; 2004; 20(6):1733-40. PubMed ID: 15575706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions.
    Mampel J; Spirig T; Weber SS; Haagensen JA; Molin S; Hilbi H
    Appl Environ Microbiol; 2006 Apr; 72(4):2885-95. PubMed ID: 16597995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linearized kinetic model of Listeria monocytogenes biofilm growth.
    Takhistov P; George B
    Bioprocess Biosyst Eng; 2004 Jul; 26(4):259-70. PubMed ID: 15179574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Film analysis of activated sludge microbial discs by the Taguchi method and grey relational analysis.
    Chen MY; Syu MJ
    Bioprocess Biosyst Eng; 2003 Dec; 26(2):83-92. PubMed ID: 14574549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D finite element model of biofilm detachment using real biofilm structures from CLSM data.
    Böl M; Möhle RB; Haesner M; Neu TR; Horn H; Krull R
    Biotechnol Bioeng; 2009 May; 103(1):177-86. PubMed ID: 19191328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic treatment of complex chemical wastewater in a sequencing batch biofilm reactor: process optimization and evaluation of factor interactions using the Taguchi dynamic DOE methodology.
    Venkata Mohan S; Chandrasekhara Rao N; Krishna Prasad K; Murali Krishna P; Sreenivas Rao R; Sarma PN
    Biotechnol Bioeng; 2005 Jun; 90(6):732-45. PubMed ID: 15812798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of microbial regrowth potential by assimilable organic carbon in various reclaimed water and distribution systems.
    Thayanukul P; Kurisu F; Kasuga I; Furumai H
    Water Res; 2013 Jan; 47(1):225-32. PubMed ID: 23134741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.