These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 1521953)

  • 21. Investigation of adaptive processes in child and adolescent swimmers. Acid-base parameters of swimmers and weight-lifters.
    Fendler K; Lissák K; Romhányi M; Kovács GL; Szücs R; Mátrai A
    Acta Physiol Acad Sci Hung; 1977; 49(1):27-36. PubMed ID: 39423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Maximal accumulated oxygen deficit and blood responses of ammonia, lactate and pH after anaerobic test: a comparison between international and national elite karate athletes.
    Ravier G; Dugué B; Grappe F; Rouillon JD
    Int J Sports Med; 2006 Oct; 27(10):810-7. PubMed ID: 16586323
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characteristics of titin in strength and power athletes.
    McBride JM; Triplett-McBride T; Davie AJ; Abernethy PJ; Newton RU
    Eur J Appl Physiol; 2003 Feb; 88(6):553-7. PubMed ID: 12560954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantifying training intensity distribution in elite endurance athletes: is there evidence for an "optimal" distribution?
    Seiler KS; Kjerland GØ
    Scand J Med Sci Sports; 2006 Feb; 16(1):49-56. PubMed ID: 16430681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The relationship between electromyography and work intensity revisited: a brief review with references to lacticacidosis and hyperammonia.
    Taylor AD; Bronks R; Bryant AL
    Electromyogr Clin Neurophysiol; 1997 Oct; 37(7):387-98. PubMed ID: 9402427
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The relationship of plasma ammonia and lactate concentrations to perceived exertion in trained and untrained women.
    Spodaryk K; Szmatlan U; Berger L
    Eur J Appl Physiol Occup Physiol; 1990; 61(3-4):309-12. PubMed ID: 2282917
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increased training intensity effects on plasma lactate, ventilatory threshold, and endurance.
    Acevedo EO; Goldfarb AH
    Med Sci Sports Exerc; 1989 Oct; 21(5):563-8. PubMed ID: 2607946
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in selected biochemical, muscular strength, power, and endurance measures during deliberate overreaching and tapering in rugby league players.
    Coutts A; Reaburn P; Piva TJ; Murphy A
    Int J Sports Med; 2007 Feb; 28(2):116-24. PubMed ID: 16835824
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Short-Term Seasonal Development of Anthropometry, Body Composition, Physical Fitness, and Sport-Specific Performance in Young Olympic Weightlifters.
    Chaabene H; Prieske O; Lesinski M; Sandau I; Granacher U
    Sports (Basel); 2019 Nov; 7(12):. PubMed ID: 31801283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of postexercise supplementation of chicken essence on the elimination of exercise-induced plasma lactate and ammonia.
    Lo HI; Tsi D; Tan AC; Wang SW; Hsu MC
    Chin J Physiol; 2005 Dec; 48(4):187-92. PubMed ID: 16548420
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diaphragm does not produce ammonia or lactate during high-intensity short-term exercise.
    Manohar M; Hassan AS
    Am J Physiol; 1990 Oct; 259(4 Pt 2):H1185-9. PubMed ID: 2221124
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of acute potassium-magnesium aspartate supplementation on ammonia concentrations during and after resistance training.
    Tuttle JL; Potteiger JA; Evans BW; Ozmun JC
    Int J Sport Nutr; 1995 Jun; 5(2):102-9. PubMed ID: 7670449
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in blood ammonia induced by a maximum effort in trained and untrained subjects.
    Vanuxem D; Delpierre S; Barlatier A; Vanuxem P
    Arch Int Physiol Biochim Biophys; 1993; 101(6):405-9. PubMed ID: 7511436
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stress responses to short-term intensified and reduced training in competitive weightlifters.
    Storey AG; Birch NP; Fan V; Smith HK
    Scand J Med Sci Sports; 2016 Jan; 26(1):29-40. PubMed ID: 25640639
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiological changes in hemostasis associated with acute exercise.
    Wheeler ME; Davis GL; Gillespie WJ; Bern MM
    J Appl Physiol (1985); 1986 Mar; 60(3):986-90. PubMed ID: 3082849
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Muscle fiber composition and blood ammonia levels after intense exercise in humans.
    Dudley GA; Staron RS; Murray TF; Hagerman FC; Luginbuhl A
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Feb; 54(2):582-6. PubMed ID: 6833053
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinematical analysis of the snatch in elite male junior weightlifters of different weight categories.
    Campos J; Poletaev P; Cuesta A; Pablos C; Carratalá V
    J Strength Cond Res; 2006 Nov; 20(4):843-50. PubMed ID: 17194258
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The ischaemic lactate-ammonia test.
    Livingstone C; Chinnery PF; Turnbull DM
    Ann Clin Biochem; 2001 Jul; 38(Pt 4):304-10. PubMed ID: 11471870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative kinematic analysis of the snatch lifts in elite male adolescent weightlifters.
    Harbili E; Alptekin A
    J Sports Sci Med; 2014 May; 13(2):417-22. PubMed ID: 24790499
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Biomechanical Comparison of Successful and Unsuccessful Snatch Attempts among Elite Male Weightlifters.
    Nagao H; Kubo Y; Tsuno T; Kurosaka S; Muto M
    Sports (Basel); 2019 Jun; 7(6):. PubMed ID: 31234453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.