These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 15219585)
1. Early laminar organization of the human cerebrum demonstrated with diffusion tensor imaging in extremely premature infants. Maas LC; Mukherjee P; Carballido-Gamio J; Veeraraghavan S; Miller SP; Partridge SC; Henry RG; Barkovich AJ; Vigneron DB Neuroimage; 2004 Jul; 22(3):1134-40. PubMed ID: 15219585 [TBL] [Abstract][Full Text] [Related]
2. Diffusion tensor imaging of the developing human cerebrum. Gupta RK; Hasan KM; Trivedi R; Pradhan M; Das V; Parikh NA; Narayana PA J Neurosci Res; 2005 Jul; 81(2):172-8. PubMed ID: 15931676 [TBL] [Abstract][Full Text] [Related]
3. Comparing microstructural and macrostructural development of the cerebral cortex in premature newborns: diffusion tensor imaging versus cortical gyration. Deipolyi AR; Mukherjee P; Gill K; Henry RG; Partridge SC; Veeraraghavan S; Jin H; Lu Y; Miller SP; Ferriero DM; Vigneron DB; Barkovich AJ Neuroimage; 2005 Sep; 27(3):579-86. PubMed ID: 15921934 [TBL] [Abstract][Full Text] [Related]
4. Correlation of diffusion tensor imaging with histology in the developing human frontal cerebrum. Trivedi R; Husain N; Rathore RK; Saksena S; Srivastava S; Malik GK; Das V; Pradhan M; Pandey CM; Gupta RK Dev Neurosci; 2009; 31(6):487-96. PubMed ID: 19622880 [TBL] [Abstract][Full Text] [Related]
5. Assessment of the early organization and maturation of infants' cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. Dubois J; Hertz-Pannier L; Dehaene-Lambertz G; Cointepas Y; Le Bihan D Neuroimage; 2006 May; 30(4):1121-32. PubMed ID: 16413790 [TBL] [Abstract][Full Text] [Related]
6. Accelerated cerebral white matter development in preterm infants: a voxel-based morphometry study with diffusion tensor MR imaging. Giménez M; Miranda MJ; Born AP; Nagy Z; Rostrup E; Jernigan TL Neuroimage; 2008 Jul; 41(3):728-34. PubMed ID: 18430590 [TBL] [Abstract][Full Text] [Related]
7. Diffusion tensor imaging and tractography of human brain development. Mukherjee P; McKinstry RC Neuroimaging Clin N Am; 2006 Feb; 16(1):19-43, vii. PubMed ID: 16543084 [TBL] [Abstract][Full Text] [Related]
8. Diffusion tensor imaging: serial quantitation of white matter tract maturity in premature newborns. Partridge SC; Mukherjee P; Henry RG; Miller SP; Berman JI; Jin H; Lu Y; Glenn OA; Ferriero DM; Barkovich AJ; Vigneron DB Neuroimage; 2004 Jul; 22(3):1302-14. PubMed ID: 15219602 [TBL] [Abstract][Full Text] [Related]
9. Diffusion MR imaging characteristics of the developing primate brain. Kroenke CD; Bretthorst GL; Inder TE; Neil JJ Neuroimage; 2005 May; 25(4):1205-13. PubMed ID: 15850738 [TBL] [Abstract][Full Text] [Related]
11. Neonatal brain structure on MRI and diffusion tensor imaging, sex, and neurodevelopment in very-low-birthweight preterm children. Rose J; Butler EE; Lamont LE; Barnes PD; Atlas SW; Stevenson DK Dev Med Child Neurol; 2009 Jul; 51(7):526-35. PubMed ID: 19459915 [TBL] [Abstract][Full Text] [Related]
12. Evidence of subcortical and cortical aging of the acoustic pathway: a diffusion tensor imaging (DTI) study. Lutz J; Hemminger F; Stahl R; Dietrich O; Hempel M; Reiser M; Jäger L Acad Radiol; 2007 Jun; 14(6):692-700. PubMed ID: 17502259 [TBL] [Abstract][Full Text] [Related]
13. Diffusion-weighted MR of the brain: methodology and clinical application. Mascalchi M; Filippi M; Floris R; Fonda C; Gasparotti R; Villari N Radiol Med; 2005 Mar; 109(3):155-97. PubMed ID: 15775887 [TBL] [Abstract][Full Text] [Related]
14. Prolonged coexistence of transient and permanent circuitry elements in the developing cerebral cortex of fetuses and preterm infants. Kostovic I; Judas M Dev Med Child Neurol; 2006 May; 48(5):388-93. PubMed ID: 16608549 [TBL] [Abstract][Full Text] [Related]
15. Single-shot fast spin-echo diffusion tensor imaging of the brain and spine with head and phased array coils at 1.5 T and 3.0 T. Xu D; Henry RG; Mukherjee P; Carvajal L; Miller SP; Barkovich AJ; Vigneron DB Magn Reson Imaging; 2004 Jul; 22(6):751-9. PubMed ID: 15234443 [TBL] [Abstract][Full Text] [Related]
16. Uncomplicated intraventricular hemorrhage is followed by reduced cortical volume at near-term age. Vasileiadis GT; Gelman N; Han VK; Williams LA; Mann R; Bureau Y; Thompson RT Pediatrics; 2004 Sep; 114(3):e367-72. PubMed ID: 15342899 [TBL] [Abstract][Full Text] [Related]
17. Comparison of diffusion tensor imaging measurements at 3.0 T versus 1.5 T with and without parallel imaging. Alexander AL; Lee JE; Wu YC; Field AS Neuroimaging Clin N Am; 2006 May; 16(2):299-309, xi. PubMed ID: 16731368 [TBL] [Abstract][Full Text] [Related]
18. [Diagnostic imaging of brain maturation in premature infants]. van Wezel-Meijler G; van der Knaap MS Ned Tijdschr Geneeskd; 2001 Mar; 145(9):410-7. PubMed ID: 11253495 [TBL] [Abstract][Full Text] [Related]
20. [Optic radiation in normal adults: a study using magnetic resonance diffusion tensor imaging and diffusion tensor tractography]. Wan SH; Zhang XL; Xiao XL; Sun X; Xing HF; Qiu SJ Nan Fang Yi Ke Da Xue Xue Bao; 2008 Mar; 28(3):396-8. PubMed ID: 18359699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]