BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 15219618)

  • 1. Prenyl-binding domains: potential targets for Ras inhibitors and anti-cancer drugs.
    Kloog Y; Cox AD
    Semin Cancer Biol; 2004 Aug; 14(4):253-61. PubMed ID: 15219618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using inhibitors of prenylation to block localization and transforming activity.
    Berzat AC; Brady DC; Fiordalisi JJ; Cox AD
    Methods Enzymol; 2006; 407():575-97. PubMed ID: 16757354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Ras inhibitor farnesylthiosalicylic acid (Salirasib) disrupts the spatiotemporal localization of active Ras: a potential treatment for cancer.
    Rotblat B; Ehrlich M; Haklai R; Kloog Y
    Methods Enzymol; 2008; 439():467-89. PubMed ID: 18374183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting Ras and Rho GTPases as opportunities for cancer therapeutics.
    Walker K; Olson MF
    Curr Opin Genet Dev; 2005 Feb; 15(1):62-8. PubMed ID: 15661535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geranylgeranylated, but not farnesylated, RhoB suppresses Ras transformation of NIH-3T3 cells.
    Mazières J; Tillement V; Allal C; Clanet C; Bobin L; Chen Z; Sebti SM; Favre G; Pradines A
    Exp Cell Res; 2005 Apr; 304(2):354-64. PubMed ID: 15748883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring Ras-pathway--inhibitor combinations for cancer therapy.
    Blum R; Kloog Y
    Drug Resist Updat; 2005 Dec; 8(6):369-80. PubMed ID: 16356760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RAS: target for cancer therapy.
    Saxena N; Lahiri SS; Hambarde S; Tripathi RP
    Cancer Invest; 2008 Nov; 26(9):948-55. PubMed ID: 18798058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets.
    Konstantinopoulos PA; Karamouzis MV; Papavassiliou AG
    Nat Rev Drug Discov; 2007 Jul; 6(7):541-55. PubMed ID: 17585331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rho GTPases: promising cellular targets for novel anticancer drugs.
    Fritz G; Kaina B
    Curr Cancer Drug Targets; 2006 Feb; 6(1):1-14. PubMed ID: 16475973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene expression signature of human cancer cell lines treated with the ras inhibitor salirasib (S-farnesylthiosalicylic acid).
    Blum R; Elkon R; Yaari S; Zundelevich A; Jacob-Hirsch J; Rechavi G; Shamir R; Kloog Y
    Cancer Res; 2007 Apr; 67(7):3320-8. PubMed ID: 17409441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatty acylation and prenylation of proteins: what's hot in fat.
    Magee T; Seabra MC
    Curr Opin Cell Biol; 2005 Apr; 17(2):190-6. PubMed ID: 15780596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of hydrophobic prenyl groups of isoprenylated proteins in human cancer cells.
    Hjertman M; Wejde J; Larsson O
    Biochem Biophys Res Commun; 2001 Nov; 288(3):736-41. PubMed ID: 11676505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rho GDP dissociation inhibitors as potential targets for anticancer treatment.
    Zhang B
    Drug Resist Updat; 2006 Jun; 9(3):134-41. PubMed ID: 16807067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vav transformation requires activation of multiple GTPases and regulation of gene expression.
    Palmby TR; Abe K; Karnoub AE; Der CJ
    Mol Cancer Res; 2004 Dec; 2(12):702-11. PubMed ID: 15634759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Farnesyl and geranylgeranyl transferase inhibitors induce G1 arrest by targeting the proteasome.
    Efuet ET; Keyomarsi K
    Cancer Res; 2006 Jan; 66(2):1040-51. PubMed ID: 16424040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential regulation of cyclooxygenase 2 expression by small GTPases Ras, Rac1, and RhoA.
    Chang YW; Putzer K; Ren L; Kaboord B; Chance TW; Qoronfleh MW; Jakobi R
    J Cell Biochem; 2005 Oct; 96(2):314-29. PubMed ID: 16088958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simvastatin antagonizes tumor necrosis factor-alpha inhibition of bone morphogenetic proteins-2-induced osteoblast differentiation by regulating Smad signaling and Ras/Rho-mitogen-activated protein kinase pathway.
    Yamashita M; Otsuka F; Mukai T; Otani H; Inagaki K; Miyoshi T; Goto J; Yamamura M; Makino H
    J Endocrinol; 2008 Mar; 196(3):601-13. PubMed ID: 18310456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TATA box-binding protein-associated factor 12 is important for RAS-induced transformation properties of colorectal cancer cells.
    Voulgari A; Voskou S; Tora L; Davidson I; Sasazuki T; Shirasawa S; Pintzas A
    Mol Cancer Res; 2008 Jun; 6(6):1071-83. PubMed ID: 18567809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional control of the human high mobility group A1 gene: basal and oncogenic Ras-regulated expression.
    Cleynen I; Huysmans C; Sasazuki T; Shirasawa S; Van de Ven W; Peeters K
    Cancer Res; 2007 May; 67(10):4620-9. PubMed ID: 17510387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. c-Myc inhibits Ras-mediated differentiation of pheochromocytoma cells by blocking c-Jun up-regulation.
    Vaqué JP; Fernández-García B; García-Sanz P; Ferrandiz N; Bretones G; Calvo F; Crespo P; Marín MC; León J
    Mol Cancer Res; 2008 Feb; 6(2):325-39. PubMed ID: 18314492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.