These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

703 related articles for article (PubMed ID: 15219689)

  • 21. Effect of a physical phase plate on contrast transfer in an aberration-corrected transmission electron microscope.
    Gamm B; Schultheiss K; Gerthsen D; Schröder RR
    Ultramicroscopy; 2008 Aug; 108(9):878-84. PubMed ID: 18456408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental geometry for simultaneous beam characterization and sample imaging allowing for pink beam Fourier transform holography or coherent diffractive imaging.
    Flewett S; Eisebitt S
    Appl Opt; 2011 Feb; 50(6):852-8. PubMed ID: 21343964
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Towards automated electron holographic tomography for 3D mapping of electrostatic potentials.
    Wolf D; Lubk A; Lichte H; Friedrich H
    Ultramicroscopy; 2010 Apr; 110(5):390-9. PubMed ID: 20106597
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Method of compensating for aberrations in electron holography by using a liquid-crystal spatial-light modulator.
    Chen J; Lai G; Ishizuka K; Tonomura A
    Appl Opt; 1994 Mar; 33(7):1187-93. PubMed ID: 20862136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Full-field and single-shot quantitative phase microscopy using dynamic speckle illumination.
    Choi Y; Yang TD; Lee KJ; Choi W
    Opt Lett; 2011 Jul; 36(13):2465-7. PubMed ID: 21725446
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Observation of surfaces by reflection electron holography.
    Osakabe N
    Microsc Res Tech; 1992 Feb; 20(4):457-62. PubMed ID: 1498359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Resolution improvement in digital holography by angular and polarization multiplexing.
    Yuan C; Situ G; Pedrini G; Ma J; Osten W
    Appl Opt; 2011 Mar; 50(7):B6-11. PubMed ID: 21364714
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shadow images for in-line holography in a STEM instrument.
    Wang SY; Cowley JM
    Microsc Res Tech; 1995 Feb; 30(2):181-92. PubMed ID: 7711329
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Imaging modes for potential mapping in semiconductor devices by electron holography with improved lateral resolution.
    Sickmann J; Formánek P; Linck M; Muehle U; Lichte H
    Ultramicroscopy; 2011 Mar; 111(4):290-302. PubMed ID: 21353156
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimation of wave fields of incident beams in a transmission electron microscope by using a small selected-area aperture.
    Morishita S; Yamasaki J; Tanaka N
    J Electron Microsc (Tokyo); 2011; 60(2):101-8. PubMed ID: 21320861
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reconstruction technique for off-axis electron holography using coarse fringes.
    Fujita T; Yamamoto K; McCartney MR; Smith DJ
    Ultramicroscopy; 2006 Apr; 106(6):486-91. PubMed ID: 16515836
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Off-axis electron holography with a dual-lens imaging system and its usefulness in 2-D potential mapping of semiconductor devices.
    Wang YY; Kawasaki M; Bruley J; Gribelyuk M; Domenicucci A; Gaudiello J
    Ultramicroscopy; 2004 Nov; 101(2-4):63-72. PubMed ID: 15450653
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generalized formulations for aerial image based lens aberration metrology in lithographic tools with arbitrarily shaped illumination sources.
    Liu W; Liu S; Shi T; Tang Z
    Opt Express; 2010 Sep; 18(19):20096-104. PubMed ID: 20940899
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase-shifting electron holography for atomic image reconstruction.
    Yamamoto K; Sugawara Y; McCartney MR; Smith DJ
    J Electron Microsc (Tokyo); 2010 Aug; 59 Suppl 1():S81-8. PubMed ID: 20543160
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Off-axis STEM or TEM holography combined with four-dimensional diffraction imaging.
    Cowley JM
    Microsc Microanal; 2004 Feb; 10(1):9-15. PubMed ID: 15306061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Current and future aberration correctors for the improvement of resolution in electron microscopy.
    Haider M; Hartel P; Müller H; Uhlemann S; Zach J
    Philos Trans A Math Phys Eng Sci; 2009 Sep; 367(1903):3665-82. PubMed ID: 19687059
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the importance of fifth-order spherical aberration for a fully corrected electron microscope.
    Chang LY; Kirkland AI; Titchmarsh JM
    Ultramicroscopy; 2006 Mar; 106(4-5):301-6. PubMed ID: 16309838
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 2D-mapping of dopant distribution in deep sub micron CMOS devices by electron holography using adapted FIB-preparation.
    Lenk A; Lichte H; Muehle U
    J Electron Microsc (Tokyo); 2005 Aug; 54(4):351-9. PubMed ID: 16123059
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of optical aberration on Gaussian speckle in a partially coherent imaging system.
    Kang D; Milster TD
    J Opt Soc Am A Opt Image Sci Vis; 2009 Dec; 26(12):2577-85. PubMed ID: 19956327
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of the effects of partial coherence on exit wave reconstruction.
    Allen LJ; McBride W; O'Leary NL; Oxley MP
    J Microsc; 2004 Oct; 216(Pt 1):70-5. PubMed ID: 15369486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.