BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 15219806)

  • 1. Effects of meal timing on tumor progression in mice.
    Wu MW; Li XM; Xian LJ; Lévi F
    Life Sci; 2004 Jul; 75(10):1181-93. PubMed ID: 15219806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of three-hour restricted food access during the light period on circadian rhythms of temperature, locomotor activity, and heart rate in rats.
    Boulamery-Velly A; Simon N; Vidal J; Mouchet J; Bruguerolle B
    Chronobiol Int; 2005; 22(3):489-98. PubMed ID: 16076649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of light and food schedules on liver and tumor molecular clocks in mice.
    Filipski E; Innominato PF; Wu M; Li XM; Iacobelli S; Xian LJ; Lévi F
    J Natl Cancer Inst; 2005 Apr; 97(7):507-17. PubMed ID: 15812076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer inhibition through circadian reprogramming of tumor transcriptome with meal timing.
    Li XM; Delaunay F; Dulong S; Claustrat B; Zampera S; Fujii Y; Teboul M; Beau J; Lévi F
    Cancer Res; 2010 Apr; 70(8):3351-60. PubMed ID: 20395208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Daily meal timing is not necessary for resetting the main circadian clock by calorie restriction.
    Mendoza J; Drevet K; Pévet P; Challet E
    J Neuroendocrinol; 2008 Feb; 20(2):251-60. PubMed ID: 18088363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circadian expression of dihydropyrimidine dehydrogenase, thymidylate synthase, c-myc and p53 mRNA in mouse liver tissue.
    Wu MW; Xian LJ; Li XM; Pasquale I; Francis L
    Ai Zheng; 2004 Mar; 23(3):235-42. PubMed ID: 15025949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of chronic jet lag on tumor progression in mice.
    Filipski E; Delaunay F; King VM; Wu MW; Claustrat B; Gréchez-Cassiau A; Guettier C; Hastings MH; Francis L
    Cancer Res; 2004 Nov; 64(21):7879-85. PubMed ID: 15520194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dorsomedial hypothalamic nucleus is not necessary for food-anticipatory circadian rhythms of behavior, temperature or clock gene expression in mice.
    Moriya T; Aida R; Kudo T; Akiyama M; Doi M; Hayasaka N; Nakahata N; Mistlberger R; Okamura H; Shibata S
    Eur J Neurosci; 2009 Apr; 29(7):1447-60. PubMed ID: 19519629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian disruption in experimental cancer processes.
    Filipski E; Lévi F
    Integr Cancer Ther; 2009 Dec; 8(4):298-302. PubMed ID: 20042408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photic and non-photic entrainment on daily rhythm of locomotor activity in goats.
    Giannetto C; Casella S; Caola G; Piccione G
    Anim Sci J; 2010 Feb; 81(1):122-8. PubMed ID: 20163683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Meal-feeding studies in mice: effects of diet on blood lipids and energy expenditure.
    Parks EJ; Schneider TL; Baar RA
    Comp Med; 2005 Feb; 55(1):24-9. PubMed ID: 15766205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modifications of local cerebral glucose utilization during circadian food-anticipatory activity.
    de Vasconcelos AP; Bartol-Munier I; Feillet CA; Gourmelen S; Pevet P; Challet E
    Neuroscience; 2006 May; 139(2):741-8. PubMed ID: 16472928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of exogenous melatonin and circadian synchronization on tumor progression in melanoma-bearing C57BL6 mice.
    Otálora BB; Madrid JA; Alvarez N; Vicente V; Rol MA
    J Pineal Res; 2008 Apr; 44(3):307-15. PubMed ID: 18339126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meal-feeding rodents and toxicology research.
    Carey GB; Merrill LC
    Chem Res Toxicol; 2012 Aug; 25(8):1545-50. PubMed ID: 22642213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low amplitude entrainment of mice and the impact of circadian phase on behavior tests.
    Beeler JA; Prendergast B; Zhuang X
    Physiol Behav; 2006 May; 87(5):870-80. PubMed ID: 16600314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian rhythms in heart rate, motility, and body temperature of wild-type C57 and eNOS knock-out mice under light-dark, free-run, and after time zone transition.
    Arraj M; Lemmer B
    Chronobiol Int; 2006; 23(4):795-812. PubMed ID: 16887749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photic and non-photic effects on the daily activity pattern of Mongolian gerbils.
    Weinert D; Weinandy R; Gattermann R
    Physiol Behav; 2007 Feb; 90(2-3):325-33. PubMed ID: 17084868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian rhythm in DNA synthesis in mouse thymus: effect of altered lighting regimens, restricted feeding and presence of Ehrlich ascites tumor.
    Pauly JE; Scheving LE; Burns ER; Tsai TH
    Anat Rec; 1976 Mar; 184(3):275-84. PubMed ID: 1259179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of alcohol consumption and withdrawal on circadian temperature and activity rhythms in Sprague-Dawley, Lewis, and Fischer male and female rats.
    Taylor AN; Tio DL; Bando JK; Romeo HE; Prolo P
    Alcohol Clin Exp Res; 2006 Mar; 30(3):438-47. PubMed ID: 16499484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian rhythm entrainment with melatonin, melatonin receptor antagonist S22153 or their combination in mice exposed to constant light.
    Li XM; Beau J; Delagrange P; Mocaër E; Lévi F
    J Pineal Res; 2004 Oct; 37(3):176-84. PubMed ID: 15357662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.