These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 15219837)
1. Contribution of bone-marrow-derived cells to choroidal neovascularization. Takahashi H; Yanagi Y; Tamaki Y; Muranaka K; Usui T; Sata M Biochem Biophys Res Commun; 2004 Jul; 320(2):372-5. PubMed ID: 15219837 [TBL] [Abstract][Full Text] [Related]
2. Quantitative enumeration of vascular smooth muscle cells and endothelial cells derived from bone marrow precursors in experimental choroidal neovascularization. Espinosa-Heidmann DG; Reinoso MA; Pina Y; Csaky KG; Caicedo A; Cousins SW Exp Eye Res; 2005 Mar; 80(3):369-78. PubMed ID: 15721619 [TBL] [Abstract][Full Text] [Related]
3. Nicotine promotes contribution of bone marrow-derived cells to experimental choroidal neovascularization in mice. Hou HY; Wang YS; Xu JF; Wang BR Exp Eye Res; 2008 Jun; 86(6):983-90. PubMed ID: 18472096 [TBL] [Abstract][Full Text] [Related]
4. Choroidal neovascularization is provided by bone marrow cells. Tomita M; Yamada H; Adachi Y; Cui Y; Yamada E; Higuchi A; Minamino K; Suzuki Y; Matsumura M; Ikehara S Stem Cells; 2004; 22(1):21-6. PubMed ID: 14688388 [TBL] [Abstract][Full Text] [Related]
5. Preventing stem cell incorporation into choroidal neovascularization by targeting homing and attachment factors. Sengupta N; Caballero S; Mames RN; Timmers AM; Saban D; Grant MB Invest Ophthalmol Vis Sci; 2005 Jan; 46(1):343-8. PubMed ID: 15623794 [TBL] [Abstract][Full Text] [Related]
6. The dynamic conduct of bone marrow-derived cells in the choroidal neovascularization microenvironment. Hou HY; Wang YS; Xu JF; Wang YC; Liu JP Curr Eye Res; 2006 Dec; 31(12):1051-61. PubMed ID: 17169844 [TBL] [Abstract][Full Text] [Related]
7. Recruitment of marrow-derived endothelial cells to experimental choroidal neovascularization by local expression of vascular endothelial growth factor. Csaky KG; Baffi JZ; Byrnes GA; Wolfe JD; Hilmer SC; Flippin J; Cousins SW Exp Eye Res; 2004 Jun; 78(6):1107-16. PubMed ID: 15109917 [TBL] [Abstract][Full Text] [Related]
8. [The distribution and phenotype of bone marrow-derived cells in mice's eyes after induction of choroidal neovascularization by laser photocoagulation]. Hou HY; Wang YS; Xu JF; Zhang P; Su XN; Wang YC; Liu JP Zhonghua Yan Ke Za Zhi; 2008 Mar; 44(3):212-6. PubMed ID: 18785543 [TBL] [Abstract][Full Text] [Related]
9. Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Davidoff AM; Ng CY; Brown P; Leary MA; Spurbeck WW; Zhou J; Horwitz E; Vanin EF; Nienhuis AW Clin Cancer Res; 2001 Sep; 7(9):2870-9. PubMed ID: 11555605 [TBL] [Abstract][Full Text] [Related]
10. Bone marrow-derived cells do not incorporate into the adult growing vasculature. Ziegelhoeffer T; Fernandez B; Kostin S; Heil M; Voswinckel R; Helisch A; Schaper W Circ Res; 2004 Feb; 94(2):230-8. PubMed ID: 14656934 [TBL] [Abstract][Full Text] [Related]
11. Comparison of various bone marrow fractions in the ability to participate in vascular remodeling after mechanical injury. Sahara M; Sata M; Matsuzaki Y; Tanaka K; Morita T; Hirata Y; Okano H; Nagai R Stem Cells; 2005 Aug; 23(7):874-8. PubMed ID: 15941860 [TBL] [Abstract][Full Text] [Related]
13. Circulating vascular progenitor cells do not contribute to compensatory lung growth. Voswinckel R; Ziegelhoeffer T; Heil M; Kostin S; Breier G; Mehling T; Haberberger R; Clauss M; Gaumann A; Schaper W; Seeger W Circ Res; 2003 Aug; 93(4):372-9. PubMed ID: 12881479 [TBL] [Abstract][Full Text] [Related]
14. Analysis of tumor-associated stromal cells using SCID GFP transgenic mice: contribution of local and bone marrow-derived host cells. Udagawa T; Puder M; Wood M; Schaefer BC; D'Amato RJ FASEB J; 2006 Jan; 20(1):95-102. PubMed ID: 16394272 [TBL] [Abstract][Full Text] [Related]
15. Determinants of skeletal muscle contributions from circulating cells, bone marrow cells, and hematopoietic stem cells. Sherwood RI; Christensen JL; Weissman IL; Wagers AJ Stem Cells; 2004; 22(7):1292-304. PubMed ID: 15579647 [TBL] [Abstract][Full Text] [Related]
16. Characterization and distribution of bone marrow-derived cells in mouse cornea. Nakamura T; Ishikawa F; Sonoda KH; Hisatomi T; Qiao H; Yamada J; Fukata M; Ishibashi T; Harada M; Kinoshita S Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):497-503. PubMed ID: 15671274 [TBL] [Abstract][Full Text] [Related]
17. Conditions of retinal glial and inflammatory cell activation after irradiation in a GFP-chimeric mouse model. Müther PS; Semkova I; Schmidt K; Abari E; Kuebbeler M; Beyer M; Abken H; Meyer KL; Kociok N; Joussen AM Invest Ophthalmol Vis Sci; 2010 Sep; 51(9):4831-9. PubMed ID: 20435601 [TBL] [Abstract][Full Text] [Related]
18. Neuroectodermal and microglial differentiation of bone marrow cells in the mouse spinal cord and sensory ganglia. Corti S; Locatelli F; Donadoni C; Strazzer S; Salani S; Del Bo R; Caccialanza M; Bresolin N; Scarlato G; Comi GP J Neurosci Res; 2002 Dec; 70(6):721-33. PubMed ID: 12444594 [TBL] [Abstract][Full Text] [Related]
19. Participation of bone marrow-derived cells in long-term repair processes after experimental stroke. Beck H; Voswinckel R; Wagner S; Ziegelhoeffer T; Heil M; Helisch A; Schaper W; Acker T; Hatzopoulos AK; Plate KH J Cereb Blood Flow Metab; 2003 Jun; 23(6):709-17. PubMed ID: 12796719 [TBL] [Abstract][Full Text] [Related]