These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 15220478)

  • 1. Microviscometry reveals reduced blood viscosity and altered shear rate and shear stress profiles in microvessels after hemodilution.
    Long DS; Smith ML; Pries AR; Ley K; Damiano ER
    Proc Natl Acad Sci U S A; 2004 Jul; 101(27):10060-5. PubMed ID: 15220478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microvascular blood viscosity in vivo and the endothelial surface layer.
    Pries AR; Secomb TW
    Am J Physiol Heart Circ Physiol; 2005 Dec; 289(6):H2657-64. PubMed ID: 16040719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasma expander viscosity effects on red cell-free layer thickness after moderate hemodilution.
    Yalcin O; Wang Q; Johnson PC; Palmer AF; Cabrales P
    Biorheology; 2011; 48(5):277-91. PubMed ID: 22433569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasma viscosity regulates systemic and microvascular perfusion during acute extreme anemic conditions.
    Cabrales P; Tsai AG
    Am J Physiol Heart Circ Physiol; 2006 Nov; 291(5):H2445-52. PubMed ID: 16731641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood viscosity maintains microvascular conditions during normovolemic anemia independent of blood oxygen-carrying capacity.
    Cabrales P; Martini J; Intaglietta M; Tsai AG
    Am J Physiol Heart Circ Physiol; 2006 Aug; 291(2):H581-90. PubMed ID: 16517943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasma viscosity regulates capillary perfusion during extreme hemodilution in hamster skinfold model.
    Tsai AG; Friesenecker B; McCarthy M; Sakai H; Intaglietta M
    Am J Physiol; 1998 Dec; 275(6):H2170-80. PubMed ID: 9843817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PEG-albumin supraplasma expansion is due to increased vessel wall shear stress induced by blood viscosity shear thinning.
    Sriram K; Tsai AG; Cabrales P; Meng F; Acharya SA; Tartakovsky DM; Intaglietta M
    Am J Physiol Heart Circ Physiol; 2012 Jun; 302(12):H2489-97. PubMed ID: 22505638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perfusion pressure and blood flow determine microvascular apparent viscosity.
    Yalcin O; Ortiz D; Williams AT; Johnson PC; Cabrales P
    Exp Physiol; 2015 Aug; 100(8):977-87. PubMed ID: 26011432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemodilution and blood substitutes.
    Intaglietta M
    Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(2):137-44. PubMed ID: 8087237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beneficial effects due to increasing blood and plasma viscosity.
    Martini J; Carpentier B; Chávez Negrete A; Cabrales P; Tsai AG; Intaglietta M
    Clin Hemorheol Microcirc; 2006; 35(1-2):51-7. PubMed ID: 16899906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistance to blood flow in microvessels in vivo.
    Pries AR; Secomb TW; Gessner T; Sperandio MB; Gross JF; Gaehtgens P
    Circ Res; 1994 Nov; 75(5):904-15. PubMed ID: 7923637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels.
    Alizadehrad D; Imai Y; Nakaaki K; Ishikawa T; Yamaguchi T
    J Biomech; 2012 Oct; 45(15):2684-9. PubMed ID: 22981440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood flow resistance during hemodilution: effect of plasma composition.
    Pries AR; Secomb TW; Sperandio M; Gaehtgens P
    Cardiovasc Res; 1998 Jan; 37(1):225-35. PubMed ID: 9539877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capillary blood flow in the amelanotic melanoma of the hamster after isovolemic hemodilution.
    Oda T; Lehmann A; Endrich B
    Biorheology; 1984; 21(4):509-20. PubMed ID: 6487763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pial microvascular hemodynamics in anemia.
    Hurn PD; Traystman RJ; Shoukas AA; Jones MD
    Am J Physiol; 1993 Jun; 264(6 Pt 2):H2131-5. PubMed ID: 8322943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 microns diameter.
    Reinke W; Johnson PC; Gaehtgens P
    Circ Res; 1986 Aug; 59(2):124-32. PubMed ID: 3742742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of suspending viscosity on red blood cell dynamics and blood flows in microvessels.
    Zhang J
    Microcirculation; 2011 Oct; 18(7):562-73. PubMed ID: 21624001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiovascular benefits in moderate increases of blood and plasma viscosity surpass those associated with lowering viscosity: Experimental and clinical evidence.
    Salazar Vázquez BY; Martini J; Chávez Negrete A; Tsai AG; Forconi S; Cabrales P; Johnson PC; Intaglietta M
    Clin Hemorheol Microcirc; 2010; 44(2):75-85. PubMed ID: 20203362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased viscosity is protective for arteriolar endothelium and microvascular perfusion during severe hemodilution in hamster cheek pouch.
    Bertuglia S
    Microvasc Res; 2001 Jan; 61(1):56-63. PubMed ID: 11162196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.