BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

527 related articles for article (PubMed ID: 15221028)

  • 1. DNA display II. Genetic manipulation of combinatorial chemistry libraries for small-molecule evolution.
    Halpin DR; Harbury PB
    PLoS Biol; 2004 Jul; 2(7):E174. PubMed ID: 15221028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Evolution of DNA-Templated Synthesis as a Tool for Materials Discovery.
    O'Reilly RK; Turberfield AJ; Wilks TR
    Acc Chem Res; 2017 Oct; 50(10):2496-2509. PubMed ID: 28915003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA display III. Solid-phase organic synthesis on unprotected DNA.
    Halpin DR; Lee JA; Wrenn SJ; Harbury PB
    PLoS Biol; 2004 Jul; 2(7):E175. PubMed ID: 15221029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA display I. Sequence-encoded routing of DNA populations.
    Halpin DR; Harbury PB
    PLoS Biol; 2004 Jul; 2(7):E173. PubMed ID: 15221027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesofluidic devices for DNA-programmed combinatorial chemistry.
    Weisinger RM; Marinelli RJ; Wrenn SJ; Harbury PB
    PLoS One; 2012; 7(3):e32299. PubMed ID: 22479318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical evolution as a tool for molecular discovery.
    Wrenn SJ; Harbury PB
    Annu Rev Biochem; 2007; 76():331-49. PubMed ID: 17506635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Employing Photocatalysis for the Design and Preparation of DNA-Encoded Libraries: A Case Study.
    Kölmel DK; Zhu H; Flanagan ME; Sakata SK; Harris AR; Wan J; Morgan BA
    Chem Rec; 2021 Apr; 21(4):616-630. PubMed ID: 33570227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PNA-encoded chemical libraries.
    Zambaldo C; Barluenga S; Winssinger N
    Curr Opin Chem Biol; 2015 Jun; 26():8-15. PubMed ID: 25621730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of combinatorial library methods in cancer research and drug discovery.
    Lam KS
    Anticancer Drug Des; 1997 Apr; 12(3):145-67. PubMed ID: 9154108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel selection methods for DNA-encoded chemical libraries.
    Chan AI; McGregor LM; Liu DR
    Curr Opin Chem Biol; 2015 Jun; 26():55-61. PubMed ID: 25723146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PNA-Encoded Synthesis (PES) and DNA Display of Small Molecule Libraries.
    Saarbach J; Barluenga S; Winssinger N
    Methods Mol Biol; 2020; 2105():119-139. PubMed ID: 32088867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directed Chemical Evolution with an Outsized Genetic Code.
    Krusemark CJ; Tilmans NP; Brown PO; Harbury PB
    PLoS One; 2016; 11(8):e0154765. PubMed ID: 27508294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation of aminoacyl tRNAs for the in vitro selection of "drug-like" molecules.
    Merryman C; Green R
    Chem Biol; 2004 Apr; 11(4):575-82. PubMed ID: 15123252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of Nucleic Acid Binding Molecules from Combinatorial Biohybrid Nucleobase Peptide Libraries.
    Pomplun S; Gates ZP; Zhang G; Quartararo AJ; Pentelute BL
    J Am Chem Soc; 2020 Nov; 142(46):19642-19651. PubMed ID: 33166454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incremental truncation as a strategy in the engineering of novel biocatalysts.
    Ostermeier M; Nixon AE; Benkovic SJ
    Bioorg Med Chem; 1999 Oct; 7(10):2139-44. PubMed ID: 10579518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, synthesis and selection of DNA-encoded small-molecule libraries.
    Clark MA; Acharya RA; Arico-Muendel CC; Belyanskaya SL; Benjamin DR; Carlson NR; Centrella PA; Chiu CH; Creaser SP; Cuozzo JW; Davie CP; Ding Y; Franklin GJ; Franzen KD; Gefter ML; Hale SP; Hansen NJ; Israel DI; Jiang J; Kavarana MJ; Kelley MS; Kollmann CS; Li F; Lind K; Mataruse S; Medeiros PF; Messer JA; Myers P; O'Keefe H; Oliff MC; Rise CE; Satz AL; Skinner SR; Svendsen JL; Tang L; van Vloten K; Wagner RW; Yao G; Zhao B; Morgan BA
    Nat Chem Biol; 2009 Sep; 5(9):647-54. PubMed ID: 19648931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid-phase combinatorial library synthesis: recent advances and future perspectives.
    Barot KP; Nikolova S; Ivanov I; Ghate MD
    Comb Chem High Throughput Screen; 2014; 17(5):417-38. PubMed ID: 24237348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro selection of protein and peptide libraries using mRNA display.
    Takahashi TT; Roberts RW
    Methods Mol Biol; 2009; 535():293-314. PubMed ID: 19377989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An in vitro translation, selection and amplification system for peptide nucleic acids.
    Brudno Y; Birnbaum ME; Kleiner RE; Liu DR
    Nat Chem Biol; 2010 Feb; 6(2):148-55. PubMed ID: 20081830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Building synthetic gene circuits from combinatorial libraries: screening and selection strategies.
    Schaerli Y; Isalan M
    Mol Biosyst; 2013 Jul; 9(7):1559-67. PubMed ID: 23340599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.