These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 15221229)

  • 1. Aerobic production of alanine by Escherichia coli aceF ldhA mutants expressing the Bacillus sphaericus alaD gene.
    Lee M; Smith GM; Eiteman MA; Altman E
    Appl Microbiol Biotechnol; 2004 Jul; 65(1):56-60. PubMed ID: 15221229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alanine production in an H+-ATPase- and lactate dehydrogenase-defective mutant of Escherichia coli expressing alanine dehydrogenase.
    Wada M; Narita K; Yokota A
    Appl Microbiol Biotechnol; 2007 Sep; 76(4):819-25. PubMed ID: 17583806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fed-batch two-phase production of alanine by a metabolically engineered Escherichia coli.
    Smith GM; Lee SA; Reilly KC; Eiteman MA; Altman E
    Biotechnol Lett; 2006 Oct; 28(20):1695-700. PubMed ID: 16902848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of acetate pathway mutations on the production of pyruvate in Escherichia coli.
    Tomar A; Eiteman MA; Altman E
    Appl Microbiol Biotechnol; 2003 Jul; 62(1):76-82. PubMed ID: 12835924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli.
    Zhu J; Shimizu K
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):367-75. PubMed ID: 14673546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of L -alanine by metabolically engineered Escherichia coli.
    Zhang X; Jantama K; Moore JC; Shanmugam KT; Ingram LO
    Appl Microbiol Biotechnol; 2007 Nov; 77(2):355-66. PubMed ID: 17874321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of succinate by a pflB ldhA double mutant of Escherichia coli overexpressing malate dehydrogenase.
    Wang W; Li Z; Xie J; Ye Q
    Bioprocess Biosyst Eng; 2009 Oct; 32(6):737-45. PubMed ID: 19156443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant.
    Sánchez AM; Bennett GN; San KY
    Biotechnol Prog; 2005; 21(2):358-65. PubMed ID: 15801771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions.
    Vemuri GN; Eiteman MA; Altman E
    J Ind Microbiol Biotechnol; 2002 Jun; 28(6):325-32. PubMed ID: 12032805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of overexpression of malate dehydrogenase on succinic acid production in Escherichia coli NZN111].
    Liang L; Ma J; Liu R; Wang G; Xu B; Zhang M; Jiang M
    Sheng Wu Gong Cheng Xue Bao; 2011 Jul; 27(7):1005-12. PubMed ID: 22016984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of different carbon sources on pyruvic acid production by using lpdA gene knockout Escherichia coli].
    Shen D; Feng X; Lin D; Yao S
    Sheng Wu Gong Cheng Xue Bao; 2009 Sep; 25(9):1345-51. PubMed ID: 19938477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of pyruvate by changing the redox status in Escherichia coli.
    Ojima Y; Suryadarma P; Tsuchida K; Taya M
    Biotechnol Lett; 2012 May; 34(5):889-93. PubMed ID: 22215378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of ArcA and FNR on the expression of genes related to the oxygen regulation and the glycolysis pathway in Escherichia coli under microaerobic growth conditions.
    Shalel-Levanon S; San KY; Bennett GN
    Biotechnol Bioeng; 2005 Oct; 92(2):147-59. PubMed ID: 15988767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Escherichia coli to improve culture performance and reduce formation of by-products during recombinant protein production under transient intermittent anaerobic conditions.
    Lara AR; Vazquez-Limón C; Gosset G; Bolívar F; López-Munguía A; Ramírez OT
    Biotechnol Bioeng; 2006 Aug; 94(6):1164-75. PubMed ID: 16718678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Process development of succinic acid production by Escherichia coli NZN111 using acetate as an aerobic carbon source.
    Liu Y; Wu H; Li Q; Tang X; Li Z; Ye Q
    Enzyme Microb Technol; 2011 Oct; 49(5):459-64. PubMed ID: 22112618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Corynebacterium glutamicum for the production of pyruvate.
    Wieschalka S; Blombach B; Eikmanns BJ
    Appl Microbiol Biotechnol; 2012 Apr; 94(2):449-59. PubMed ID: 22228312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactic acid production by Rhizopus oryzae transformants with modified lactate dehydrogenase activity.
    Skory CD
    Appl Microbiol Biotechnol; 2004 Apr; 64(2):237-42. PubMed ID: 14624317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation.
    Jojima T; Fujii M; Mori E; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):159-65. PubMed ID: 20217078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene.
    Skory CD
    J Ind Microbiol Biotechnol; 2003 Jan; 30(1):22-7. PubMed ID: 12545382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation.
    Eschbach M; Schreiber K; Trunk K; Buer J; Jahn D; Schobert M
    J Bacteriol; 2004 Jul; 186(14):4596-604. PubMed ID: 15231792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.