These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 15221398)
1. Heat and water vapour transfer of protective clothing systems in a cold environment, measured with a newly developed sweating thermal manikin. Fukazawa T; Lee G; Matsuoka T; Kano K; Tochihara Y Eur J Appl Physiol; 2004 Sep; 92(6):645-8. PubMed ID: 15221398 [TBL] [Abstract][Full Text] [Related]
2. The influence of sweating on the heat transmission properties of cold protective clothing studied with a sweating thermal manikin. Meinander H; Hellsten M Int J Occup Saf Ergon; 2004; 10(3):263-9. PubMed ID: 15377411 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of protective ensemble thermal characteristics through sweating hot plate, sweating thermal manikin, and human tests. Kim JH; Powell JB; Roberge RJ; Shepherd A; Coca A J Occup Environ Hyg; 2014; 11(4):259-67. PubMed ID: 24579755 [TBL] [Abstract][Full Text] [Related]
4. New functions and applications of walter, the sweating fabric manikin. Fan J; Qian X Eur J Appl Physiol; 2004 Sep; 92(6):641-4. PubMed ID: 15138829 [TBL] [Abstract][Full Text] [Related]
6. Determination of clothing evaporative resistance on a sweating thermal manikin in an isothermal condition: heat loss method or mass loss method? Wang F; Gao C; Kuklane K; Holmér I Ann Occup Hyg; 2011 Aug; 55(7):775-83. PubMed ID: 21669906 [TBL] [Abstract][Full Text] [Related]
7. Heat and mass transfer from a baby manikin: impact of a chemical warfare protective bag. Danielsson U Eur J Appl Physiol; 2004 Sep; 92(6):689-93. PubMed ID: 15150661 [TBL] [Abstract][Full Text] [Related]
8. Comparison of Thermal Manikin Modeling and Human Subjects' Response During Use of Cooling Devices Under Personal Protective Ensembles in the Heat. Quinn T; Kim JH; Seo Y; Coca A Prehosp Disaster Med; 2018 Jun; 33(3):279-287. PubMed ID: 29669616 [TBL] [Abstract][Full Text] [Related]
9. Occupational needs and evaluation methods for cold protective clothing. Anttonen H Arctic Med Res; 1993; 52 Suppl 9():1-76. PubMed ID: 8048995 [TBL] [Abstract][Full Text] [Related]
10. Prediction of clothing thermal insulation and moisture vapour resistance of the clothed body walking in wind. Qian X; Fan J Ann Occup Hyg; 2006 Nov; 50(8):833-42. PubMed ID: 16857703 [TBL] [Abstract][Full Text] [Related]
11. Modelling fire-fighter responses to exercise and asymmetric infrared radiation using a dynamic multi-mode model of human physiology and results from the sweating agile thermal manikin. Richards MG; Fiala D Eur J Appl Physiol; 2004 Sep; 92(6):649-53. PubMed ID: 15133675 [TBL] [Abstract][Full Text] [Related]
12. Effect of sweating set rate on clothing real evaporative resistance determined on a sweating thermal manikin in a so-called isothermal condition (T manikin = T a = T r). Lu Y; Wang F; Peng H; Shi W; Song G Int J Biometeorol; 2016 Apr; 60(4):481-8. PubMed ID: 26150329 [TBL] [Abstract][Full Text] [Related]
14. Protection against cold in prehospital care: evaporative heat loss reduction by wet clothing removal or the addition of a vapor barrier--a thermal manikin study. Henriksson O; Lundgren P; Kuklane K; Holmér I; Naredi P; Bjornstig U Prehosp Disaster Med; 2012 Feb; 27(1):53-8. PubMed ID: 22445055 [TBL] [Abstract][Full Text] [Related]
15. Evaluating cold, wind, and moisture protection of different coverings for prehospital maritime transportation-a thermal manikin and human study. Jussila K; Rissanen S; Parkkola K; Anttonen Hannu Prehosp Disaster Med; 2014 Dec; 29(6):580-8. PubMed ID: 25358397 [TBL] [Abstract][Full Text] [Related]
16. Efficiency of liquid cooling garments: prediction and manikin measurement. Xu X; Endrusick T; Laprise B; Santee W; Kolka M Aviat Space Environ Med; 2006 Jun; 77(6):644-8. PubMed ID: 16780244 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of thermal and evaporative resistances in cricket helmets using a sweating manikin. Pang TY; Subic A; Takla M Appl Ergon; 2014 Mar; 45(2):300-7. PubMed ID: 23664244 [TBL] [Abstract][Full Text] [Related]
18. Heat strain in chemical protective ensembles: Effects of fabric thermal properties. Xu X; Rioux TP; Pomerantz N; Tew S; Blanchard LA J Therm Biol; 2019 Dec; 86():102435. PubMed ID: 31789231 [TBL] [Abstract][Full Text] [Related]
19. Dry and wet heat transfer through clothing dependent on the clothing properties under cold conditions. Richards MG; Rossi R; Meinander H; Broede P; Candas V; den Hartog E; Holmér I; Nocker W; Havenith G Int J Occup Saf Ergon; 2008; 14(1):69-76. PubMed ID: 18394328 [TBL] [Abstract][Full Text] [Related]
20. Non-evaporative effects of a wet mid layer on heat transfer through protective clothing. Bröde P; Havenith G; Wang X; Candas V; den Hartog EA; Griefahn B; Holmér I; Kuklane K; Meinander H; Nocker W; Richards M Eur J Appl Physiol; 2008 Sep; 104(2):341-9. PubMed ID: 18084775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]