These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 15221399)

  • 1. Predicting human thermal comfort in a transient nonuniform thermal environment.
    Rugh JP; Farrington RB; Bharathan D; Vlahinos A; Burke R; Huizenga C; Zhang H
    Eur J Appl Physiol; 2004 Sep; 92(6):721-7. PubMed ID: 15221399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring the human body's microclimate using a thermal manikin.
    Voelker C; Maempel S; Kornadt O
    Indoor Air; 2014 Dec; 24(6):567-79. PubMed ID: 24666331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal sensation and comfort in transient non-uniform thermal environments.
    Zhang H; Huizenga C; Arens E; Wang D
    Eur J Appl Physiol; 2004 Sep; 92(6):728-33. PubMed ID: 15221406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a two-layer movable sweating thermal manikin.
    Tamura T
    Ind Health; 2006 Jul; 44(3):441-4. PubMed ID: 16922188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal aspects of vehicle comfort.
    Holmér I; Nilsson H; Bohm M; Norén O
    Appl Human Sci; 1995 Jul; 14(4):159-65. PubMed ID: 7493249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and manufacturing of two thermal observation manikins for automobile applications.
    Lebbin P; Hosni M; Gielda T
    Eur J Appl Physiol; 2004 Sep; 92(6):622-5. PubMed ID: 15185084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of thermal and evaporative resistances in cricket helmets using a sweating manikin.
    Pang TY; Subic A; Takla M
    Appl Ergon; 2014 Mar; 45(2):300-7. PubMed ID: 23664244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical analysis of three methods for calculating thermal insulation of clothing from thermal manikin.
    Huang J
    Ann Occup Hyg; 2012 Jul; 56(6):728-35. PubMed ID: 22798547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An innovative HVAC control system: Implementation and testing in a vehicular cabin.
    Fojtlín M; Fišer J; Pokorný J; Povalač A; Urbanec T; Jícha M
    J Therm Biol; 2017 Dec; 70(Pt A):64-68. PubMed ID: 29074027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of thermal manikins in environmental ergonomics.
    Wyon DP
    Scand J Work Environ Health; 1989; 15 Suppl 1():84-94. PubMed ID: 2609125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of the thermal adaptability of people accustomed to air-conditioned environments and naturally ventilated environments.
    Yu J; Ouyang Q; Zhu Y; Shen H; Cao G; Cui W
    Indoor Air; 2012 Apr; 22(2):110-8. PubMed ID: 21950966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review on modeling heat transfer and thermoregulatory responses in human body.
    Fu M; Weng W; Chen W; Luo N
    J Therm Biol; 2016 Dec; 62(Pt B):189-200. PubMed ID: 27888933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation and visualisation of perceived thermal conditions.
    Nilsson HO
    Eur J Appl Physiol; 2004 Sep; 92(6):714-6. PubMed ID: 15098131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating the human body's microclimate using automatic coupling of CFD and an advanced thermoregulation model.
    Voelker C; Alsaad H
    Indoor Air; 2018 May; 28(3):415-425. PubMed ID: 29393990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-sector thermophysiological human simulator.
    Psikuta A; Richards M; Fiala D
    Physiol Meas; 2008 Feb; 29(2):181-92. PubMed ID: 18256450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opportunities and constraints of presently used thermal manikins for thermo-physiological simulation of the human body.
    Psikuta A; Kuklane K; Bogdan A; Havenith G; Annaheim S; Rossi RM
    Int J Biometeorol; 2016 Mar; 60(3):435-46. PubMed ID: 26219607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of thermal manikin surface temperature on the performance of personal cooling systems.
    Jetté FX; Dionne JP; Rose J; Makris A
    Eur J Appl Physiol; 2004 Sep; 92(6):669-72. PubMed ID: 15106006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental investigation into the interaction between the human body and room airflow and its effect on thermal comfort under stratum ventilation.
    Cheng Y; Lin Z
    Indoor Air; 2016 Apr; 26(2):274-85. PubMed ID: 25857272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of sweating on the heat transmission properties of cold protective clothing studied with a sweating thermal manikin.
    Meinander H; Hellsten M
    Int J Occup Saf Ergon; 2004; 10(3):263-9. PubMed ID: 15377411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Personal cooling with phase change materials to improve thermal comfort from a heat wave perspective.
    Gao C; Kuklane K; Wang F; Holmér I
    Indoor Air; 2012 Dec; 22(6):523-30. PubMed ID: 22385303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.