BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1522150)

  • 1. Tumour infiltrating macrophages are capable of bone resorption.
    Quinn JM; Athanasou NA
    J Cell Sci; 1992 Mar; 101 ( Pt 3)():681-6. PubMed ID: 1522150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human tumour-associated macrophages are capable of bone resorption.
    Athanasou NA; Quinn JM
    Br J Cancer; 1992 Apr; 65(4):523-6. PubMed ID: 1562461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular and hormonal mechanisms associated with malignant bone resorption.
    Quinn JM; Matsumura Y; Tarin D; McGee JO; Athanasou NA
    Lab Invest; 1994 Oct; 71(4):465-71. PubMed ID: 7526033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor infiltrating macrophages and metastasis-associated osteolysis (review).
    Athanasou N
    Int J Oncol; 1993 Feb; 2(2):261-3. PubMed ID: 21573547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymethylmethacrylate-induced inflammatory macrophages resorb bone.
    Quinn J; Joyner C; Triffitt JT; Athanasou NA
    J Bone Joint Surg Br; 1992 Sep; 74(5):652-8. PubMed ID: 1527108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cells of the mononuclear phagocyte series differentiate into osteoclastic lacunar bone resorbing cells.
    Quinn JM; Sabokbar A; Athanasou NA
    J Pathol; 1996 May; 179(1):106-11. PubMed ID: 8691334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells.
    Udagawa N; Takahashi N; Akatsu T; Tanaka H; Sasaki T; Nishihara T; Koga T; Martin TJ; Suda T
    Proc Natl Acad Sci U S A; 1990 Sep; 87(18):7260-4. PubMed ID: 2169622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human tumour-associated macrophages differentiate into osteoclastic bone-resorbing cells.
    Quinn JM; McGee JO; Athanasou NA
    J Pathol; 1998 Jan; 184(1):31-6. PubMed ID: 9582524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human mesenchymal tumour-associated macrophages differentiate into osteoclastic bone-resorbing cells.
    Yang TT; Sabokbar A; Gibbons CL; Athanasou NA
    J Bone Joint Surg Br; 2002 Apr; 84(3):452-6. PubMed ID: 12002510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synovial fluid macrophages are capable of osteoclast formation and resorption.
    Adamopoulos IE; Sabokbar A; Wordsworth BP; Carr A; Ferguson DJ; Athanasou NA
    J Pathol; 2006 Jan; 208(1):35-43. PubMed ID: 16278818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bisphosphonate inhibition of bone resorption induced by particulate biomaterial-associated macrophages.
    Pandey R; Quinn JM; Sabokbar A; Athanasou NA
    Acta Orthop Scand; 1996 Jun; 67(3):221-8. PubMed ID: 8686457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rodent osteoblast-like cells support osteoclastic differentiation of human cord blood monocytes in the presence of M-CSF and 1,25 dihydroxyvitamin D3.
    Quinn JM; Fujikawa Y; McGee JO; Athanasou NA
    Int J Biochem Cell Biol; 1997 Jan; 29(1):173-9. PubMed ID: 9076952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone resorption by cells isolated from rheumatoid synovium.
    Chang JS; Quinn JM; Demaziere A; Bulstrode CJ; Francis MJ; Duthie RB; Athanasou NA
    Ann Rheum Dis; 1992 Nov; 51(11):1223-9. PubMed ID: 1334644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arthroplasty implant biomaterial particle associated macrophages differentiate into lacunar bone resorbing cells.
    Pandey R; Quinn J; Joyner C; Murray DW; Triffitt JT; Athanasou NA
    Ann Rheum Dis; 1996 Jun; 55(6):388-95. PubMed ID: 8694579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cellular actions of interleukin-11 on bone resorption in vitro.
    Hill PA; Tumber A; Papaioannou S; Meikle MC
    Endocrinology; 1998 Apr; 139(4):1564-72. PubMed ID: 9528935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human arthroplasty derived macrophages differentiate into osteoclastic bone resorbing cells.
    Sabokbar A; Fujikawa Y; Neale S; Murray DW; Athanasou NA
    Ann Rheum Dis; 1997 Jul; 56(7):414-20. PubMed ID: 9486003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxyapatite particles are capable of inducing osteoclast formation.
    Sabokbar A; Pandey R; Díaz J; Quinn JM; Murray DW; Athanasou NA
    J Mater Sci Mater Med; 2001 Aug; 12(8):659-64. PubMed ID: 15348234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thrombopoietin inhibits in vitro osteoclastogenesis from murine bone marrow cells.
    Wakikawa T; Shioi A; Hino M; Inaba M; Nishizawa Y; Tatsumi N; Morii H; Otani S
    Endocrinology; 1997 Oct; 138(10):4160-6. PubMed ID: 9322925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macrophage colony-stimulating factor and interleukin-6 release by periprosthetic cells stimulates osteoclast formation and bone resorption.
    Neale SD; Sabokbar A; Howie DW; Murray DW; Athanasou NA
    J Orthop Res; 1999 Sep; 17(5):686-94. PubMed ID: 10569477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mouse mammary tumor cell line, MMT060562, produces prostaglandin E2 and leukemia inhibitory factor and supports osteoclast formation in vitro via a stromal cell-dependent pathway.
    Akatsu T; Ono K; Katayama Y; Tamura T; Nishikawa M; Kugai N; Yamamoto M; Nagata N
    J Bone Miner Res; 1998 Mar; 13(3):400-8. PubMed ID: 9525340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.