BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 15221844)

  • 1. 2-Phospha-4-silabicyclo[1.1.0]butane as a reactive intermediate.
    Slootweg JC; De Kanter FJ; Schakel M; Ehlers AW; Gehrhus B; Lutz M; Mills AM; Spek AL; Lammertsma K
    Angew Chem Int Ed Engl; 2004 Jun; 43(26):3474-7. PubMed ID: 15221844
    [No Abstract]   [Full Text] [Related]  

  • 2. Valence isomerization of 2-phospha-4-silabicyclo[1.1.0]butane: a high-level ab initio study.
    Slootweg JC; Ehlers AW; Lammertsma K
    J Mol Model; 2006 Jul; 12(5):531-6. PubMed ID: 16642334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonvolatile Me(3)P-like P-donor ligand: synthesis and properties of 4-phenyl-1-phospha-4-silabicyclo[2.2.2]octane.
    Ochida A; Hara K; Ito H; Sawamura M
    Org Lett; 2003 Jul; 5(15):2671-4. PubMed ID: 12868886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation and isomerization of n-butane on sulfated zirconia model systems--an integrated study across the materials and pressure gaps.
    Breitkopf C; Papp H; Li X; Olindo R; Lercher JA; Lloyd R; Wrabetz S; Jentoft FC; Meinel K; Förster S; Schindler KM; Neddermeyer H; Widdra W; Hofmann A; Sauer J
    Phys Chem Chem Phys; 2007 Jul; 9(27):3600-18. PubMed ID: 17612725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A conformational study of phospha(III)- and phospha(V)-guanidine compounds.
    Mansfield NE; Grundy J; Coles MP; Avent AG; Hitchcock PB
    J Am Chem Soc; 2006 Oct; 128(42):13879-93. PubMed ID: 17044716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New 6-oxa-2-silabicyclo[2.2.0]hexanes by photochemical conversion of acyl(allyl)(dimethyl)silanes.
    Hammaecher C; Portella C
    Chem Commun (Camb); 2008 Nov; (44):5833-5. PubMed ID: 19009097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manganese(II) and cobalt(II) complexes of 1,4-bis(diphenylphosphinoyl)butane.
    Lees AM; Platt AW
    Acta Crystallogr C; 2009 Jan; 65(Pt 1):m10-3. PubMed ID: 19129589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloroform degradation by butane-grown cells of Rhodococcus aetherovorans BCP1.
    Frascari D; Pinelli D; Nocentini M; Fedi S; Pii Y; Zannoni D
    Appl Microbiol Biotechnol; 2006 Nov; 73(2):421-8. PubMed ID: 17058077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ studies of fuel oxidation in solid oxide fuel cells.
    Pomfret MB; Owrutsky JC; Walker RA
    Anal Chem; 2007 Mar; 79(6):2367-72. PubMed ID: 17295449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermentation product butane 2,3-diol induces Ca2+ transients in E. coli through activation of lanthanum-sensitive Ca2+ channels.
    Campbell AK; Naseem R; Wann K; Holland IB; Matthews SB
    Cell Calcium; 2007 Feb; 41(2):97-106. PubMed ID: 16842848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laboratory studies of butane nucleation on organic haze particles: application to Titan's clouds.
    Curtis DB; Glandorf DL; Toon OB; Tolbert MA; McKay CP; Khare BN
    J Phys Chem A; 2005 Feb; 109(7):1382-90. PubMed ID: 16833455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rotation dynamics of 2-methyl butane and n-pentane in MCM-22 zeolite: a molecular dynamics simulation study.
    Huang S; Finsy V; Persoons J; Telling MT; Baron GV; Denayer JF
    Phys Chem Chem Phys; 2009 Apr; 11(16):2869-75. PubMed ID: 19421501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of a butane monolayer adsorbed on single-walled carbon nanotubes.
    Rawat DS; Furuhashi T; Migone AD
    Langmuir; 2009 Jan; 25(2):973-6. PubMed ID: 19138160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural increments for 11-vertex nido-phospha- and aza(carba)boranes and -borates; dependence of energy penalties on the extent of Electron Localization.
    Kiani FA; Hofmann M
    Inorg Chem; 2005 May; 44(10):3746-54. PubMed ID: 15877459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, characterization and antimicrobial activity of 1,5-bis[2-(hydroximino)-1-methyl-3-oxo-butane-1,1-diyl]thiocarbonohydrazide and 1,5-bis[2-(hydroximino) -3-oxo-1-phenyl-butane-1,1-diyl]thiocarbonohydrazide.
    Patil MV; Malve SP
    Acta Pol Pharm; 2004; 61(2):135-8. PubMed ID: 15493296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Mn and Fe on the reactivity of sulfated zirconia toward H2 and n-butane: a diffuse reflectance IR spectroscopic investigation.
    Klose BS; Jentoft FC; Schlögl R; Subbotina IR; Kazansky VB
    Langmuir; 2005 Nov; 21(23):10564-72. PubMed ID: 16262321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane.
    Zhang J; Liu X; Blume R; Zhang A; Schlögl R; Su DS
    Science; 2008 Oct; 322(5898):73-7. PubMed ID: 18832641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cometabolic transformation of cis-1,2-dichloroethylene and cis-1,2-dichloroethylene epoxide by a butane-grown mixed culture.
    Kim Y; Semprini L
    Water Sci Technol; 2005; 52(8):125-31. PubMed ID: 16312959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Determination of butane in respiratory gases by means of GC/MS and GC/MS-MS].
    Jungheim M; Kijewski H
    Arch Kriminol; 2005; 215(3-4):103-12. PubMed ID: 15887783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal diffusion and partial molar enthalpy variations of n-butane in silicalite-1.
    Inzoli I; Simon JM; Bedeaux D; Kjelstrup S
    J Phys Chem B; 2008 Nov; 112(47):14937-51. PubMed ID: 18973376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.