These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 15223018)

  • 1. Differences in intramembrane particle distribution in young and old human erythrocytes.
    Cordero JF; Rodríguez PJ; Romero PJ
    Cell Biol Int; 2004; 28(6):423-31. PubMed ID: 15223018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes of the asymmetrical particle distribution in erythrocyte membranes.
    Richter W
    Acta Histochem Suppl; 1981; 23():157-63. PubMed ID: 6784160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of glycophorin on the surface of human erythrocyte membranes and its association with intramembrane particles: an immunochemical and freeze-fracture study of normal and En(a-) erythrocytes.
    Gahmberg CG; Taurén G; Virtanen I; Wartiovaara J
    J Supramol Struct; 1978; 8(3):337-47. PubMed ID: 723269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of intracellular ATP on La(3+)-induced aggregation and fusion of human erythrocytes].
    Sheremet'ev IuA; Sheremet'eva AV
    Biofizika; 2002; 47(2):300-3. PubMed ID: 11969167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intramembranous particle distribution in human erythrocytes: effects of lysis, glutaraldehyde, and poly-L-lysine.
    Pricam C; Fisher KA; Friend DS
    Anat Rec; 1977 Dec; 189(4):595-607. PubMed ID: 413458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intense, reversible aggregation of intramembrane particles in non-haemolyzed human erythrocytes. A freeze-fracture study.
    Lelkes G; Lelkes G; Merse KS; Hollán SR
    Biochim Biophys Acta; 1983 Jul; 732(1):48-57. PubMed ID: 6871201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redistribution of intramembrane particles of human erythrocytes induced by HVJ (Sendai virus): a prerequisite for the virus-induced cell fusion.
    Asano A; Sekiguchi K
    J Supramol Struct; 1978; 9(3):441-52. PubMed ID: 219299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freeze-fracture analysis of intramembrane particles of erythrocytes from normal and dystrophic hamsters.
    Davis EC; Shivers RR
    Anat Rec; 1986 Jun; 215(2):95-8. PubMed ID: 3729015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intramembranous particles in erythrocyte, reticulocyte and erythroblastic leukemic cells of the rat: a model system for erythrocyte maturation.
    Bank HL; Wise C; Hargrove K; Spicer SS
    Exp Hematol; 1978 Jun; 6(6):528-38. PubMed ID: 276471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freeze-fracture analysis of intramembrane particles of erythrocytes from normal, dystrophic, and carrier mice. A possible diagnostic tool for detection of carriers of human muscular dystrophy.
    Shivers RR; Atkinson BG
    Am J Pathol; 1979 Jan; 94(1):97-102. PubMed ID: 760542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The ATP depletion process of human erythrocytes studied by freeze fracturing].
    Kirillov VA; Votiakov VI; Konev SV
    Tsitologiia; 1987 Nov; 29(11):1245-50. PubMed ID: 3438930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of enzymatic and electron microscopy (freeze-etching) methods for studying ATP-dependent masking of erythrocyte membrane phospholipids.
    Loyter A; Gazitt Y; Ohad I
    Isr J Med Sci; 1979 Aug; 15(8):668-74. PubMed ID: 478827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterns of filipin-sterol complex distribution in intact erythrocytes and intramembrane particle-aggregated ghost membranes.
    Brown D; Montesano R; Orci L
    J Histochem Cytochem; 1982 Jul; 30(7):702-6. PubMed ID: 7108195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variations in the appearance of membrane particles after various pretreatments.
    Richter W
    Acta Histochem Suppl; 1981; 23():165-71. PubMed ID: 6784161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freeze-fracture characterization of 'young' and 'old' human erythrocytes.
    Fischbeck KH; Bonilla E; Schotland DL
    Biochim Biophys Acta; 1982 Feb; 685(2):207-10. PubMed ID: 7059602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of eryptosis by aluminium ions.
    Niemoeller OM; Kiedaisch V; Dreischer P; Wieder T; Lang F
    Toxicol Appl Pharmacol; 2006 Dec; 217(2):168-75. PubMed ID: 17055015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of the critical fragmentation of erythrocyte membranes].
    Konev SV; Finin VS; Volotovskiĭ ID; Kirillov VA
    Tsitologiia; 1978 Sep; 20(9):1060-4. PubMed ID: 214916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cell ageing on Ca2+ influx into human red cells.
    Romero PJ; Romero EA
    Cell Calcium; 1999; 26(3-4):131-7. PubMed ID: 10598277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of dimyristoyl phosphatidylcholine on intact erythrocytes. Release of spectrin-free vesicles without ATP depletion.
    Ott P; Hope MJ; Verkleij AJ; Roelofsen B; Brodbeck U; van Deenen LL
    Biochim Biophys Acta; 1981 Feb; 641(1):79-87. PubMed ID: 7213719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sialic acids of young and old red blood cells in healthy subjects.
    Jakubowska-Solarska B; Solski J
    Med Sci Monit; 2000; 6(5):871-4. PubMed ID: 11208424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.