These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 15223288)

  • 1. Measurement of protein-like fluorescence in river and waste water using a handheld spectrophotometer.
    Baker A; Ward D; Lieten SH; Periera R; Simpson EC; Slater M
    Water Res; 2004 Jul; 38(12):2934-8. PubMed ID: 15223288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catchment-scale fluorescence water quality determination.
    Baker A; Inverarity R; Ward D
    Water Sci Technol; 2005; 52(9):199-207. PubMed ID: 16445189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A long-term, multitrophic level study to assess pulp and paper mill effluent effects on aquatic communities in four US receiving waters: characteristics of the study streams, sample sites, mills, and mill effluents.
    Hall TJ; Ragsdale RL; Arthurs WJ; Ikoma J; Borton DL; Cook DL
    Integr Environ Assess Manag; 2009 Apr; 5(2):199-218. PubMed ID: 19063588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal fluorescence quenching properties of dissolved organic matter.
    Baker A
    Water Res; 2005 Nov; 39(18):4405-12. PubMed ID: 16213540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can fluorescence spectrometry be used as a surrogate for the Biochemical Oxygen Demand (BOD) test in water quality assessment? An example from South West England.
    Hudson N; Baker A; Ward D; Reynolds DM; Brunsdon C; Carliell-Marquet C; Browning S
    Sci Total Environ; 2008 Feb; 391(1):149-58. PubMed ID: 18054993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring of COD as an organic indicator in waste water and treated effluent by fluorescence excitation-emission (FEEM) matrix characterization.
    Lee S; Ahn KH
    Water Sci Technol; 2004; 50(8):57-63. PubMed ID: 15566187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-line river monitoring--new challenges and opportunities.
    Pressl A; Winkler S; Gruber G
    Water Sci Technol; 2004; 50(11):67-72. PubMed ID: 15685981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Part I. Identifying anthropogenic markers in surface waters influenced by treated effluents: a tool in potable water reuse.
    Sirivedhin T; Gray KA
    Water Res; 2005 Mar; 39(6):1154-64. PubMed ID: 15766970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting river pollution using fluorescence spectrophotometry: case studies from the Ouseburn, NE England.
    Baker A; Inverarity R; Charlton M; Richmond S
    Environ Pollut; 2003; 124(1):57-70. PubMed ID: 12683983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyfluorinated compounds in waste water treatment plant effluents and surface waters along the River Elbe, Germany.
    Ahrens L; Felizeter S; Sturm R; Xie Z; Ebinghaus R
    Mar Pollut Bull; 2009 Sep; 58(9):1326-33. PubMed ID: 19501845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence properties of some farm wastes: implications for water quality monitoring.
    Baker A
    Water Res; 2002 Jan; 36(1):189-95. PubMed ID: 11766794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. River water quality and pollution sources in the Pearl River Delta, China.
    Ouyang T; Zhu Z; Kuang Y
    J Environ Monit; 2005 Jul; 7(7):664-9. PubMed ID: 15986044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the South-North Water Diversion Project and the mitigation projects on the water quality of Han River.
    Zhu YP; Zhang HP; Chen L; Zhao JF
    Sci Total Environ; 2008 Nov; 406(1-2):57-68. PubMed ID: 18799199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discriminatory classification of natural and anthropogenic waters in two U.K. estuaries.
    Spencer RG; Baker A; Ahad JM; Cowie GL; Ganeshram R; Upstill-Goddard RC; Uher G
    Sci Total Environ; 2007 Feb; 373(1):305-23. PubMed ID: 17188336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physico-chemical and biological investigations of River Umshyrpi at Shillong, Meghalaya.
    Rajurkar NS; Nongbri B; Patwardhan AM
    Indian J Environ Health; 2003 Jan; 45(1):83-92. PubMed ID: 14723287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fate of triclosan and triclosan-methyl in sewage treatment plants and surface waters.
    Bester K
    Arch Environ Contam Toxicol; 2005 Jul; 49(1):9-17. PubMed ID: 15959704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physico-chemical and biological study of the river Chittar at Courtallam, Tamil Nadu (India).
    Murugesan AG; Perumal CM; Ruby J
    J Environ Sci Eng; 2007 Apr; 49(2):121-6. PubMed ID: 18476405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining estrogenic steroids in Taipei waters and removal in drinking water treatment using high-flow solid-phase extraction and liquid chromatography/tandem mass spectrometry.
    Chen CY; Wen TY; Wang GS; Cheng HW; Lin YH; Lien GW
    Sci Total Environ; 2007 Jun; 378(3):352-65. PubMed ID: 17428520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface water quality assessment of the Vatinsky Egan River catchment, West Siberia.
    Moskovchenko DV; Babushkin AG; Artamonova GN
    Environ Monit Assess; 2009 Jan; 148(1-4):359-68. PubMed ID: 18283550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delineation of a chemical and biological signature for stormwater pollution in an urban river.
    Salmore AK; Hollis EJ; McLellan SL
    J Water Health; 2006 Jun; 4(2):247-62. PubMed ID: 16813017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.