BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

876 related articles for article (PubMed ID: 15223315)

  • 41. Enhancement of the in vitro transcription by T7 RNA polymerase of short DNA templates containing oxidative thymine lesions.
    Guerniou V; Gasparutto D; Douki T; Cadet J; Sauvaigo S
    C R Biol; 2005 Sep; 328(9):794-801. PubMed ID: 16168360
    [TBL] [Abstract][Full Text] [Related]  

  • 42. T7 lysozyme represses T7 RNA polymerase transcription by destabilizing the open complex during initiation.
    Stano NM; Patel SS
    J Biol Chem; 2004 Apr; 279(16):16136-43. PubMed ID: 14764584
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure of T7 RNA polymerase complexed to the transcriptional inhibitor T7 lysozyme.
    Jeruzalmi D; Steitz TA
    EMBO J; 1998 Jul; 17(14):4101-13. PubMed ID: 9670025
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Use of organic cosmotropic solutes to crystallize flexible proteins: application to T7 RNA polymerase and its complex with the inhibitor T7 lysozyme.
    Jeruzalmi D; Steitz TA
    J Mol Biol; 1997 Dec; 274(5):748-56. PubMed ID: 9405156
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The structure of bacteriophage T7 lysozyme, a zinc amidase and an inhibitor of T7 RNA polymerase.
    Cheng X; Zhang X; Pflugrath JW; Studier FW
    Proc Natl Acad Sci U S A; 1994 Apr; 91(9):4034-8. PubMed ID: 8171031
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Probing the mechanisms of T7 RNA polymerase transcription initiation using photochemical conjugation of psoralen to a promoter.
    Sastry SS; Ross BM
    Biochemistry; 1997 Mar; 36(11):3133-44. PubMed ID: 9115989
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bacteriophage T7 RNA polymerase and its active-site mutants. Kinetic, spectroscopic and calorimetric characterization.
    Osumi-Davis PA; Sreerama N; Volkin DB; Middaugh CR; Woody RW; Woody AY
    J Mol Biol; 1994 Mar; 237(1):5-19. PubMed ID: 8133519
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Coupling of bacteriophage T7 DNA penetration with its transcription, during infection].
    Zavriev SK; Vorob'ev SM
    Mol Biol (Mosk); 1983; 17(5):1048-59. PubMed ID: 6355819
    [TBL] [Abstract][Full Text] [Related]  

  • 49. T7-promoter-based Escherichia coli expression system induced with bacteriophage M13HEP.
    Chen C; Huang H; Yang X; Xia Q; Li B; Wang Y
    Chin J Biotechnol; 1996; 12(4):207-13. PubMed ID: 9187491
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of a minimal binding element within the T7 RNA polymerase promoter.
    Ujvári A; Martin CT
    J Mol Biol; 1997 Nov; 273(4):775-81. PubMed ID: 9367770
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Autogene selections.
    Chelliserrykattil J; Ellington AD
    Methods Mol Biol; 2003; 230():27-43. PubMed ID: 12824567
    [No Abstract]   [Full Text] [Related]  

  • 52. Transcription of DNA templates associated with histone (H3 x H4)(2) tetramers.
    Chirinos M; Hernández F; Palacián E
    Arch Biochem Biophys; 1999 Oct; 370(2):222-30. PubMed ID: 10510281
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of the template-binding cleft of T7 RNA polymerase as the site for promoter binding by photochemical cross-linking with psoralen.
    Sastry SS
    Biochemistry; 1996 Oct; 35(42):13519-30. PubMed ID: 8885831
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stopped-flow kinetic analysis of the interaction of Escherichia coli RNA polymerase with the bacteriophage T7 A1 promoter.
    Johnson RS; Chester RE
    J Mol Biol; 1998 Oct; 283(2):353-70. PubMed ID: 9769210
    [TBL] [Abstract][Full Text] [Related]  

  • 55. All 4 bases of both strands at -9 and -8 in T7 promoter are needed to be substituted by SP6-specific bases to switch promoter specificity.
    Lee SS; Park SK; Cho IH; Kang C
    Biochem Mol Biol Int; 1993 Dec; 31(6):1017-21. PubMed ID: 8193585
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanism of T7 RNAP pausing and termination at the T7 concatemer junction: a local change in transcription bubble structure drives a large change in transcription complex architecture.
    Nayak D; Siller S; Guo Q; Sousa R
    J Mol Biol; 2008 Feb; 376(2):541-53. PubMed ID: 18166198
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Incorrect base insertion and prematurely terminated transcripts during T7 RNA polymerase transcription elongation past benzo[a]pyrenediol epoxide-modified DNA.
    Choi DJ; Roth RB; Liu T; Geacintov NE; Scicchitano DA
    J Mol Biol; 1996 Nov; 264(2):213-9. PubMed ID: 8951371
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Visualization of elongation complexes for t7 Rna polymerase by atomic force microscopy].
    Limanskaia OIu; Limanskiĭ AP
    Mol Biol (Mosk); 2008; 42(3):533-42. PubMed ID: 18702313
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Asp537 and Asp812 in bacteriophage T7 RNA polymerase as metal ion-binding sites studied by EPR, flow-dialysis, and transcription.
    Woody AY; Eaton SS; Osumi-Davis PA; Woody RW
    Biochemistry; 1996 Jan; 35(1):144-52. PubMed ID: 8555168
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transcription reinitiation properties of bacteriophage T7 RNA polymerase.
    Ferrari R; Rivetti C; Dieci G
    Biochem Biophys Res Commun; 2004 Mar; 315(2):376-80. PubMed ID: 14766218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 44.