These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15223319)

  • 1. The crystal structure of YloQ, a circularly permuted GTPase essential for Bacillus subtilis viability.
    Levdikov VM; Blagova EV; Brannigan JA; Cladière L; Antson AA; Isupov MN; Séror SJ; Wilkinson AJ
    J Mol Biol; 2004 Jul; 340(4):767-82. PubMed ID: 15223319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The GTPase, CpgA(YloQ), a putative translation factor, is implicated in morphogenesis in Bacillus subtilis.
    Cladière L; Hamze K; Madec E; Levdikov VM; Wilkinson AJ; Holland IB; Séror SJ
    Mol Genet Genomics; 2006 Apr; 275(4):409-20. PubMed ID: 16485133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallization of YloQ, a GTPase of unknown function essential for Bacillus subtilis viability.
    Cladière L; Blagova E; Levdikov VM; Brannigan JA; Séror SJ; Wilkinson AJ
    Acta Crystallogr D Biol Crystallogr; 2004 Feb; 60(Pt 2):329-30. PubMed ID: 14747714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. YjeQ, an essential, conserved, uncharacterized protein from Escherichia coli, is an unusual GTPase with circularly permuted G-motifs and marked burst kinetics.
    Daigle DM; Rossi L; Berghuis AM; Aravind L; Koonin EV; Brown ED
    Biochemistry; 2002 Sep; 41(37):11109-17. PubMed ID: 12220175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the Bacillus subtilis GTPase YloQ and its role in ribosome function.
    Campbell TL; Daigle DM; Brown ED
    Biochem J; 2005 Aug; 389(Pt 3):843-52. PubMed ID: 15828870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of YlqF, a circularly permuted GTPase: implications for its GTPase activation in 50 S ribosomal subunit assembly.
    Kim DJ; Jang JY; Yoon HJ; Suh SW
    Proteins; 2008 Sep; 72(4):1363-70. PubMed ID: 18536017
    [No Abstract]   [Full Text] [Related]  

  • 7. Mutational analysis of the ribosome assembly GTPase RbgA provides insight into ribosome interaction and ribosome-stimulated GTPase activation.
    Gulati M; Jain N; Anand B; Prakash B; Britton RA
    Nucleic Acids Res; 2013 Mar; 41(5):3217-27. PubMed ID: 23325847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The essential GTPase YphC displays a major domain rearrangement associated with nucleotide binding.
    Muench SP; Xu L; Sedelnikova SE; Rice DW
    Proc Natl Acad Sci U S A; 2006 Aug; 103(33):12359-64. PubMed ID: 16894162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for the unique biological function of small GTPase RHEB.
    Yu Y; Li S; Xu X; Li Y; Guan K; Arnold E; Ding J
    J Biol Chem; 2005 Apr; 280(17):17093-100. PubMed ID: 15728574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural stabilization of GTP-binding domains in circularly permuted GTPases: implications for RNA binding.
    Anand B; Verma SK; Prakash B
    Nucleic Acids Res; 2006; 34(8):2196-205. PubMed ID: 16648363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms.
    Niemann HH; Knetsch ML; Scherer A; Manstein DJ; Kull FJ
    EMBO J; 2001 Nov; 20(21):5813-21. PubMed ID: 11689422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering the catalytic machinery in 30S ribosome assembly GTPase YqeH.
    Anand B; Surana P; Prakash B
    PLoS One; 2010 Apr; 5(4):e9944. PubMed ID: 20376346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of an essential GTPase, YsxC, from Thermotoga maritima.
    Chan KH; Wong KB
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Jun; 67(Pt 6):640-6. PubMed ID: 21636901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of YjeQ from Thermotoga maritima contains a circularly permuted GTPase domain.
    Shin DH; Lou Y; Jancarik J; Yokota H; Kim R; Kim SH
    Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13198-203. PubMed ID: 15331784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate.
    Meyer S; Scrima A; Versées W; Wittinghofer A
    J Mol Biol; 2008 Jul; 380(3):532-47. PubMed ID: 18565343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of human RhoA in a dominantly active form complexed with a GTP analogue.
    Ihara K; Muraguchi S; Kato M; Shimizu T; Shirakawa M; Kuroda S; Kaibuchi K; Hakoshima T
    J Biol Chem; 1998 Apr; 273(16):9656-66. PubMed ID: 9545299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The conformation of bound GMPPNP suggests a mechanism for gating the active site of the SRP GTPase.
    Padmanabhan S; Freymann DM
    Structure; 2001 Sep; 9(9):859-67. PubMed ID: 11566135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A catalytic mechanism revealed by the crystal structures of the imidazolonepropionase from Bacillus subtilis.
    Yu Y; Liang YH; Brostromer E; Quan JM; Panjikar S; Dong YH; Su XD
    J Biol Chem; 2006 Dec; 281(48):36929-36. PubMed ID: 16990261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the ribosome associating GTPase HflX.
    Wu H; Sun L; Blombach F; Brouns SJ; Snijders AP; Lorenzen K; van den Heuvel RH; Heck AJ; Fu S; Li X; Zhang XC; Rao Z; van der Oost J
    Proteins; 2010 Feb; 78(3):705-13. PubMed ID: 19787775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the chloroplast signal recognition particle (SRP) receptor: domain arrangement modulates SRP-receptor interaction.
    Chandrasekar S; Chartron J; Jaru-Ampornpan P; Shan SO
    J Mol Biol; 2008 Jan; 375(2):425-36. PubMed ID: 18035371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.