BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 1522373)

  • 1. Water soluble palmitic acid-methylated cyclodextrin complex; a substrate oxidized by Mycobacterium leprae.
    Ishaque M
    Int J Lepr Other Mycobact Dis; 1992 Jun; 60(2):279-80. PubMed ID: 1522373
    [No Abstract]   [Full Text] [Related]  

  • 2. Water soluble complexes of C14 and C16 fatty acids and alcohols in media for cultivation of leprosy-derived psychrophilic mycobacteria.
    Kato L; Szejtli J; Szente L
    Int J Lepr Other Mycobact Dis; 1994 Mar; 62(1):75-88. PubMed ID: 8189091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water-soluble complexes of palmitic acid and palmitates for metabolic studies and cultivation trials of Mycobacterium leprae.
    Kato L; Szejtli ; Szente L
    Int J Lepr Other Mycobact Dis; 1992 Mar; 60(1):105-7. PubMed ID: 1602188
    [No Abstract]   [Full Text] [Related]  

  • 4. Investigations into the growth of Mycobacterium leprae in a medium with palmitic acid under different gaseous environments.
    Ishaque M; Sticht-Groh V
    Microbios; 1993; 75(304):171-9. PubMed ID: 8246810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Titration of numbers of human-derived Mycobacterium leprae required to progressively oxidize 14C-palmitic acid and release 14CO2.
    Shannon EJ; Frommel D; Guebre-Xabier M; Haile-Mariam HS
    Lepr Rev; 1994 Jun; 65(2):100-5. PubMed ID: 7968182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water soluble complex of palmitic acid in media for cultivation of leprosy-derived psychrophilic mycobacteria from Mycobacterium leprae infected tissues.
    Kátó L; Szejtli J; Szente L
    Acta Microbiol Hung; 1993; 40(1):47-58. PubMed ID: 8304006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation of Mycobacterium psychrophilum (L) to mesophilic growth on water-soluble palmitic acid complex agar media.
    Kato L
    Int J Lepr Other Mycobact Dis; 1992 Dec; 60(4):662-3. PubMed ID: 1299725
    [No Abstract]   [Full Text] [Related]  

  • 8. Direct evidence for the oxidation of palmitic acid by host-grown Mycobacterium leprae.
    Ishaque M
    Res Microbiol; 1989 Feb; 140(2):83-93. PubMed ID: 2552549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of palmitic acid by Mycobacterium leprae in an axenic medium.
    Franzblau SG
    J Clin Microbiol; 1988 Jan; 26(1):18-21. PubMed ID: 3125213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competency of human-derived Mycobacterium leprae to use palmitic acid in the synthesis of phenolic glycolipid-I and phthiocerol dimycocerosate and to release CO2 in axenic culture.
    Shannon EJ; Harris EB; Haile-Mariam HS; Guebre-Xavier M; Frommel D
    Lepr Rev; 1992 Jun; 63(2):101-7. PubMed ID: 1640777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attempts to grow Mycobacterium leprae in a medium with palmitic acid as the substrate.
    Ishaque M
    Int J Lepr Other Mycobact Dis; 1993 Jun; 61(2):294-6. PubMed ID: 8371039
    [No Abstract]   [Full Text] [Related]  

  • 12. Metabolism of Mycobacterium leprae in macrophages.
    Ramasesh N; Hastings RC; Krahenbuhl JL
    Infect Immun; 1987 May; 55(5):1203-6. PubMed ID: 3552993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of activated macrophages on Mycobacterium leprae.
    Ramasesh N; Adams LB; Franzblau SG; Krahenbuhl JL
    Infect Immun; 1991 Sep; 59(9):2864-9. PubMed ID: 1908824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biophysical optima for metabolism of Mycobacterium leprae.
    Franzblau SG; Harris EB
    J Clin Microbiol; 1988 Jun; 26(6):1124-9. PubMed ID: 3290244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of phenolic glycolipid-I synthesis in extracellular Mycobacterium leprae as an indicator of antimicrobial activity.
    Harris EB; Franzblau SG; Hastings RC
    Int J Lepr Other Mycobact Dis; 1988 Dec; 56(4):588-91. PubMed ID: 3065422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of various substrates by host grown Mycobacteria leprae and M. lepraemurium.
    Ishaque M; Kato L
    Rev Can Biol; 1977 Sep; 36(3):277-82. PubMed ID: 337415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influencing of resorption and side-effects of salicylic acid by complexing with beta-cyclodextrin.
    Szejtli J; Gerlóczy A; Sebestyén G; Fónagy A
    Pharmazie; 1981 Apr; 36(4):283-6. PubMed ID: 7255530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of branched cyclomaltooligosaccharide carboxylic acids (cyclodextrin carboxylic acids) by microbial oxidation.
    Ishiguro T; Fuse T; Oka M; Kurasawa T; Nakamichi M; Yasumura Y; Tsuda M; Yamaguchi T; Nogami I
    Carbohydr Res; 2001 Apr; 331(4):423-30. PubMed ID: 11398984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of Cu(2+)-beta-cyclodextrin complex to calf thymus DNA.
    Divakar S; Ramasarma PR; Maheswaran MM
    Indian J Biochem Biophys; 1991 Aug; 28(4):247-51. PubMed ID: 1752626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A stable water-soluble tetramethylbenzidine-2-hydroxypropyl-beta-cyclodextrin inclusion complex and its applications in enzyme assays.
    Cattaneo MV; Luong JH
    Anal Biochem; 1994 Dec; 223(2):313-20. PubMed ID: 7887477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.