BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 15223804)

  • 1. Role of lysophospholipid growth factors in the modulation of aqueous humor outflow facility.
    Mettu PS; Deng PF; Misra UK; Gawdi G; Epstein DL; Rao PV
    Invest Ophthalmol Vis Sci; 2004 Jul; 45(7):2263-71. PubMed ID: 15223804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of aqueous humor outflow facility by the Rho kinase-specific inhibitor Y-27632.
    Rao PV; Deng PF; Kumar J; Epstein DL
    Invest Ophthalmol Vis Sci; 2001 Apr; 42(5):1029-37. PubMed ID: 11274082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of myosin light chain phosphorylation in the trabecular meshwork: role in aqueous humour outflow facility.
    Rao PV; Deng P; Sasaki Y; Epstein DL
    Exp Eye Res; 2005 Feb; 80(2):197-206. PubMed ID: 15670798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blebbistatin, a novel inhibitor of myosin II ATPase activity, increases aqueous humor outflow facility in perfused enucleated porcine eyes.
    Zhang M; Rao PV
    Invest Ophthalmol Vis Sci; 2005 Nov; 46(11):4130-8. PubMed ID: 16249490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of cholesterol-lowering statins on the aqueous humor outflow pathway.
    Song J; Deng PF; Stinnett SS; Epstein DL; Rao PV
    Invest Ophthalmol Vis Sci; 2005 Jul; 46(7):2424-32. PubMed ID: 15980231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noladin ether acts on trabecular meshwork cannabinoid (CB1) receptors to enhance aqueous humor outflow facility.
    Njie YF; Kumar A; Qiao Z; Zhong L; Song ZH
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):1999-2005. PubMed ID: 16639008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of pharmacologic inhibition of protein geranylgeranyltransferase type I on aqueous humor outflow through the trabecular meshwork.
    Rao PV; Peterson YK; Inoue T; Casey PJ
    Invest Ophthalmol Vis Sci; 2008 Jun; 49(6):2464-71. PubMed ID: 18316706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of calcium-independent phospholipase A2γ in modulation of aqueous humor drainage and Ca2+ sensitization of trabecular meshwork contraction.
    Pattabiraman PP; Lih FB; Tomer KB; Rao PV
    Am J Physiol Cell Physiol; 2012 Apr; 302(7):C979-91. PubMed ID: 22237407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Connective tissue growth factor-mediated upregulation of neuromedin U expression in trabecular meshwork cells and its role in homeostasis of aqueous humor outflow.
    Iyer P; Maddala R; Pattabiraman PP; Rao PV
    Invest Ophthalmol Vis Sci; 2012 Jul; 53(8):4952-62. PubMed ID: 22761259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of dominant negative Rho-binding domain of Rho-kinase in organ cultured human eye anterior segments increases aqueous humor outflow.
    Rao PV; Deng P; Maddala R; Epstein DL; Li CY; Shimokawa H
    Mol Vis; 2005 Apr; 11():288-97. PubMed ID: 15889013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of protein kinase C in modulation of aqueous humor outflow facility.
    Khurana RN; Deng PF; Epstein DL; Vasantha Rao P
    Exp Eye Res; 2003 Jan; 76(1):39-47. PubMed ID: 12589774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel molecular insights into RhoA GTPase-induced resistance to aqueous humor outflow through the trabecular meshwork.
    Zhang M; Maddala R; Rao PV
    Am J Physiol Cell Physiol; 2008 Nov; 295(5):C1057-70. PubMed ID: 18799648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rho GTPase-mediated cytoskeletal organization in Schlemm's canal cells play a critical role in the regulation of aqueous humor outflow facility.
    Kumar J; Epstein DL
    J Cell Biochem; 2011 Feb; 112(2):600-6. PubMed ID: 21268081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of chemical inhibition of N-WASP, a critical regulator of actin polymerization on aqueous humor outflow through the conventional pathway.
    Inoue T; Pattabiraman PP; Epstein DL; Vasantha Rao P
    Exp Eye Res; 2010 Feb; 90(2):360-7. PubMed ID: 19961849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S1P₂ receptor regulation of sphingosine-1-phosphate effects on conventional outflow physiology.
    Sumida GM; Stamer WD
    Am J Physiol Cell Physiol; 2011 May; 300(5):C1164-71. PubMed ID: 21289286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sphingosine-1-phosphate effects on the inner wall of Schlemm's canal and outflow facility in perfused human eyes.
    Stamer WD; Read AT; Sumida GM; Ethier CR
    Exp Eye Res; 2009 Dec; 89(6):980-8. PubMed ID: 19715693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lysophosphatidic Acid Induces ECM Production via Activation of the Mechanosensitive YAP/TAZ Transcriptional Pathway in Trabecular Meshwork Cells.
    Ho LTY; Skiba N; Ullmer C; Rao PV
    Invest Ophthalmol Vis Sci; 2018 Apr; 59(5):1969-1984. PubMed ID: 29677358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sphingosine-1-phosphate enhancement of cortical actomyosin organization in cultured human Schlemm's canal endothelial cell monolayers.
    Sumida GM; Stamer WD
    Invest Ophthalmol Vis Sci; 2010 Dec; 51(12):6633-8. PubMed ID: 20592229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated intraocular pressure induces Rho GTPase mediated contractile signaling in the trabecular meshwork.
    Pattabiraman PP; Inoue T; Rao PV
    Exp Eye Res; 2015 Jul; 136():29-33. PubMed ID: 25956210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacologic manipulation of conventional outflow facility in ex vivo mouse eyes.
    Boussommier-Calleja A; Bertrand J; Woodward DF; Ethier CR; Stamer WD; Overby DR
    Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5838-45. PubMed ID: 22807298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.