These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 15224746)

  • 1. Reactive transport modeling of column experiments for the remediation of acid mine drainage.
    Amos RT; Mayer KU; Blowes DW; Ptacek CJ
    Environ Sci Technol; 2004 Jun; 38(11):3131-8. PubMed ID: 15224746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Process-based reactive transport modeling of a permeable reactive barrier for the treatment of mine drainage.
    Mayer KU; Benner SG; Blowes DW
    J Contam Hydrol; 2006 May; 85(3-4):195-211. PubMed ID: 16554107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of mine drainage using permeable reactive barrers: column experiments.
    Waybrant KR; Ptacek CJ; Blowes DW
    Environ Sci Technol; 2002 Mar; 36(6):1349-56. PubMed ID: 11944692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the influence of decomposing organic solids on sulfate reduction rates for iron precipitation.
    Hemsi PS; Shackelford CD; Figueroa LA
    Environ Sci Technol; 2005 May; 39(9):3215-25. PubMed ID: 15926572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial and nutrient investigations into the use of in situ layers for treatment of tailings effluent.
    Hulshof AH; Blowes DW; Ptacek CJ; Gould WD
    Environ Sci Technol; 2003 Nov; 37(21):5027-33. PubMed ID: 14620834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biogeochemistry of two types of permeable reactive barriers, organic carbon and iron-bearing organic carbon for mine drainage treatment: column experiments.
    Guo Q; Blowes DW
    J Contam Hydrol; 2009 Jul; 107(3-4):128-39. PubMed ID: 19467564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioremediation of mine water.
    Klein R; Tischler JS; Mühling M; Schlömann M
    Adv Biochem Eng Biotechnol; 2014; 141():109-72. PubMed ID: 24357145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study and steady-state simulation of biogeochemical processes in laboratory columns with aquifer material.
    Amirbahman A; Schönenberger R; Furrer G; Zobrist J
    J Contam Hydrol; 2003 Jul; 64(3-4):169-90. PubMed ID: 12814879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating remedial alternatives for an acid mine drainage stream: application of a reactive transport model.
    Runkel RL; Kimball BA
    Environ Sci Technol; 2002 Mar; 36(5):1093-101. PubMed ID: 11917996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of fly ash to improve the quality of the acid mine drainage generated by oxidation of a sulphide-rich mining waste: column experiments.
    Pérez-López R; Nieto JM; de Almodóvar GR
    Chemosphere; 2007 Apr; 67(8):1637-46. PubMed ID: 17257643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Rice straw and sewage sludge as carbon sources for sulfate-reducing bacteria treating acid mine drainage].
    Su Y; Wang J; Peng SC; Yue ZB; Chen TH; Jin J
    Huan Jing Ke Xue; 2010 Aug; 31(8):1858-63. PubMed ID: 21090305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acid tolerance of an acid mine drainage bioremediation system based on biological sulfate reduction.
    Lu J; Chen T; Wu J; Wilson PC; Hao X; Qian J
    Bioresour Technol; 2011 Nov; 102(22):10401-6. PubMed ID: 21967711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential hydrotalcite precipitation, microbial sulfate reduction and in situ hydrogen sulfide removal for neutral mine drainage treatment.
    Cheng KY; Acuña CR; Kaksonen AH; Esslemont G; Douglas GB
    Sci Total Environ; 2024 May; 926():171537. PubMed ID: 38460684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Column experiments for microbiological treatment of acid mine drainage: low-temperature, low-pH and matrix investigations.
    Tsukamoto TK; Killion HA; Miller GC
    Water Res; 2004 Mar; 38(6):1405-18. PubMed ID: 15016517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron.
    Ayala-Parra P; Sierra-Alvarez R; Field JA
    J Hazard Mater; 2016 May; 308():97-105. PubMed ID: 26808248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of in situ layers for treatment of acid mine drainage: a field comparison.
    Hulshof AH; Blowes DW; Gould WD
    Water Res; 2006 May; 40(9):1816-26. PubMed ID: 16626781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of arsenic and metals from groundwater impacted by mine waste using zero-valent iron and organic carbon: Laboratory column experiments.
    Angai JU; Ptacek CJ; Pakostova E; Bain JG; Verbuyst BR; Blowes DW
    J Hazard Mater; 2022 Feb; 424(Pt A):127295. PubMed ID: 34601408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction: A column study to mimic reactive transfer in an anoxic aquifer.
    Hellal J; Guédron S; Huguet L; Schäfer J; Laperche V; Joulian C; Lanceleur L; Burnol A; Ghestem JP; Garrido F; Battaglia-Brunet F
    J Contam Hydrol; 2015 Sep; 180():56-68. PubMed ID: 26275395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement procedure.
    Tuttle JH; Dugan PR; Randles CI
    Appl Microbiol; 1969 Feb; 17(2):297-302. PubMed ID: 5775914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.