BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 15224775)

  • 1. Hyperaccumulation of metals by Thlaspi caerulescens as affected by root development and Cd-Zn/Ca-Mg interactions.
    Saison C; Schwartz C; Morel JL
    Int J Phytoremediation; 2004; 6(1):49-61. PubMed ID: 15224775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils.
    Koopmans GF; Römkens PF; Fokkema MJ; Song J; Luo YM; Japenga J; Zhao FJ
    Environ Pollut; 2008 Dec; 156(3):905-14. PubMed ID: 18644664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cadmium hyperaccumulation and reproductive traits in natural Thlaspi caerulescens populations.
    Basic N; Keller C; Fontanillas P; Vittoz P; Besnard G; Galland N
    Plant Biol (Stuttg); 2006 Jan; 8(1):64-72. PubMed ID: 16435270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Testing of outstanding individuals of Thlaspi caerulescens for cadmium phytoextraction.
    Schwartz C; Sirguey C; Peronny S; Reeves RD; Bourgaud F; Morel JL
    Int J Phytoremediation; 2006; 8(4):339-57. PubMed ID: 17305307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of Thlaspi caerulescens to nitrogen, phosphorus and sulfur fertilisation.
    Catherine S; Christophe S; Louis MJ
    Int J Phytoremediation; 2006; 8(2):149-61. PubMed ID: 16924963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of nitrogen form on rhizosphere soil pH and zinc phytoextraction by Thlaspi caerulescens.
    Monsant AC; Tang C; Baker AJ
    Chemosphere; 2008 Oct; 73(5):635-42. PubMed ID: 18752830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake.
    Vogel-Mikus K; Pongrac P; Kump P; Necemer M; Regvar M
    Environ Pollut; 2006 Jan; 139(2):362-71. PubMed ID: 15998561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant Cd2+ and Zn2+ status effects on root and shoot heavy metal accumulation in Thlaspi caerulescens.
    Papoyan A; Piñeros M; Kochian LV
    New Phytol; 2007; 175(1):51-58. PubMed ID: 17547666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils.
    Martínez M; Bernal P; Almela C; Vélez D; García-Agustín P; Serrano R; Navarro-Aviñó J
    Chemosphere; 2006 Jun; 64(3):478-85. PubMed ID: 16337669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri.
    McGrath SP; Lombi E; Gray CW; Caille N; Dunham SJ; Zhao FJ
    Environ Pollut; 2006 May; 141(1):115-25. PubMed ID: 16202493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens.
    Yanai J; Zhao FJ; McGrath SP; Kosaki T
    Environ Pollut; 2006 Jan; 139(1):167-75. PubMed ID: 15998562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arabis gemmifera is a hyperaccumulator of Cd and Zn.
    Kubota H; Takenaka C
    Int J Phytoremediation; 2003; 5(3):197-201. PubMed ID: 14750427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cadmium leaching from micro-lysimeters planted with the hyperaccumulator Thlaspi caerulescens: experimental findings and modeling.
    Ingwersen J; Bücherl B; Neumann G; Streck T
    J Environ Qual; 2006; 35(6):2055-65. PubMed ID: 17071874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of the soil bulk density on the root morphology and cadmium uptake by Thlaspi caerulescens grown on Cd-contaminated soil].
    Yang Y; Jiang RF; Li HF; Wang W; Zheng RL
    Huan Jing Ke Xue; 2010 Dec; 31(12):3043-9. PubMed ID: 21360897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators.
    Liang HM; Lin TH; Chiou JM; Yeh KC
    Environ Pollut; 2009 Jun; 157(6):1945-52. PubMed ID: 19268408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoextraction of cadmium and zinc from arable soils amended with sewage sludge using Thlaspi caerulescens: development of a predictive model.
    Maxted AP; Black CR; West HM; Crout NM; McGrath SP; Young SD
    Environ Pollut; 2007 Dec; 150(3):363-72. PubMed ID: 17379365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fixation of metals in soil constituents and potential remobilization by hyperaccumulating and non-hyperaccumulating plants: results from an isotopic dilution study.
    Hammer D; Keller C; McLaughlin MJ; Hamon RE
    Environ Pollut; 2006 Oct; 143(3):407-15. PubMed ID: 16457917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decrease of labile Zn and Cd in the rhizosphere of hyperaccumulating Thlaspi caerulescens with time.
    Dessureault-Rompré J; Luster J; Schulin R; Tercier-Waeber ML; Nowack B
    Environ Pollut; 2010 May; 158(5):1955-62. PubMed ID: 19913965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system.
    Milner MJ; Kochian LV
    Ann Bot; 2008 Jul; 102(1):3-13. PubMed ID: 18440996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadmium-zinc accumulation and photosystem II responses of Noccaea caerulescens to Cd and Zn exposure.
    Bayçu G; Gevrek-Kürüm N; Moustaka J; Csatári I; Rognes SE; Moustakas M
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2840-2850. PubMed ID: 27838905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.