These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 15224777)
1. Ion-exchange aspects of toxic metal uptake by Indian mustard. Crist RH; Martin JR; Crist DR Int J Phytoremediation; 2004; 6(1):85-94. PubMed ID: 15224777 [TBL] [Abstract][Full Text] [Related]
2. Characterization of plant growth-promoting Bacillus edaphicus NBT and its effect on lead uptake by Indian mustard in a lead-amended soil. Sheng XF; Jiang CY; He LY Can J Microbiol; 2008 May; 54(5):417-22. PubMed ID: 18449227 [TBL] [Abstract][Full Text] [Related]
3. Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. Purakayastha TJ; Viswanath T; Bhadraray S; Chhonkar PK; Adhikari PP; Suribabu K Int J Phytoremediation; 2008; 10(1):61-72. PubMed ID: 18709932 [TBL] [Abstract][Full Text] [Related]
4. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80. Pehlivan E; Altun T J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738 [TBL] [Abstract][Full Text] [Related]
5. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA. Jalali M; Khanlari ZV Arch Environ Contam Toxicol; 2007 Nov; 53(4):519-32. PubMed ID: 17657454 [TBL] [Abstract][Full Text] [Related]
6. Effects of binary metal combinations on zinc, copper, cadmium and lead uptake and distribution in Brassica juncea. Kutrowska A; Małecka A; Piechalak A; Masiakowski W; Hanć A; Barałkiewicz D; Andrzejewska B; Zbierska J; Tomaszewska B J Trace Elem Med Biol; 2017 Dec; 44():32-39. PubMed ID: 28965594 [TBL] [Abstract][Full Text] [Related]
7. Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil. Lesage E; Meers E; Vervaeke P; Lamsal S; Hopgood M; Tack FM; Verloo MG Int J Phytoremediation; 2005; 7(2):143-52. PubMed ID: 16128445 [TBL] [Abstract][Full Text] [Related]
8. The role of root damage in the chelate-enhanced accumulation of lead by Indian mustard plants. Luo C; Shen Z; Li X; Baker AJ Int J Phytoremediation; 2006; 8(4):323-37. PubMed ID: 17305306 [TBL] [Abstract][Full Text] [Related]
9. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis). Lai HY; Chen ZS Chemosphere; 2005 Aug; 60(8):1062-71. PubMed ID: 15993153 [TBL] [Abstract][Full Text] [Related]
10. [Promotion effects of microorganisms on phytoremediation of heavy metals-contaminated soil]. Yang Z; Wang ZL; Li BW; Zhang RF Ying Yong Sheng Tai Xue Bao; 2009 Aug; 20(8):2025-31. PubMed ID: 19947228 [TBL] [Abstract][Full Text] [Related]
11. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS. Luo C; Shen Z; Li X; Baker AJ Chemosphere; 2006 Jun; 63(10):1773-84. PubMed ID: 16297960 [TBL] [Abstract][Full Text] [Related]
12. EDTA and organic acids assisted phytoextraction of Cd and Zn from a smelter contaminated soil by potherb mustard (Brassica juncea, Coss) and evaluation of its bioindicators. Guo D; Ali A; Ren C; Du J; Li R; Lahori AH; Xiao R; Zhang Z; Zhang Z Ecotoxicol Environ Saf; 2019 Jan; 167():396-403. PubMed ID: 30366273 [TBL] [Abstract][Full Text] [Related]
13. Uptake and distribution of zinc, cadmium, lead and copper in Brassica napus var. oleífera and Helianthus annus grown in contaminated soils. Herrero EM; López-Gonzálvez A; Ruiz MA; Lucas-García JA; Barbas C Int J Phytoremediation; 2003; 5(2):153-67. PubMed ID: 12929497 [TBL] [Abstract][Full Text] [Related]
14. Ability of Agrogyron elongatum to accumulate the single metal of cadmium, copper, nickel and lead and root exudation of organic acids. Yang H; Wong JW; Yang ZM; Zhou LX J Environ Sci (China); 2001 Jul; 13(3):368-75. PubMed ID: 11590773 [TBL] [Abstract][Full Text] [Related]
15. Optimizing phytoremediation of heavy metal-contaminated soil by exploiting plants' stress adaptation. Barocsi A; Csintalan Z; Kocsanyi L; Dushenkov S; Kuperberg JM; Kucharski R; Richter PI Int J Phytoremediation; 2003; 5(1):13-23. PubMed ID: 12710232 [TBL] [Abstract][Full Text] [Related]
16. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia. Muhammad D; Chen F; Zhao J; Zhang G; Wu F Int J Phytoremediation; 2009 Aug; 11(6):558-74. PubMed ID: 19810355 [TBL] [Abstract][Full Text] [Related]
17. Effects of soil amendments on the extractability and speciation of cadmium, lead, and copper in a contaminated soil. Lin D; Zhou Q Bull Environ Contam Toxicol; 2009 Jul; 83(1):136-40. PubMed ID: 19381428 [TBL] [Abstract][Full Text] [Related]
18. Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Lai HY; Chen ZS Chemosphere; 2004 Apr; 55(3):421-30. PubMed ID: 14987941 [TBL] [Abstract][Full Text] [Related]
19. Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil--a preliminary study. Li H; Wang Q; Cui Y; Dong Y; Christie P Sci Total Environ; 2005 Mar; 339(1-3):179-87. PubMed ID: 15740768 [TBL] [Abstract][Full Text] [Related]
20. Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Wu LH; Luo YM; Christie P; Wong MH Chemosphere; 2003 Feb; 50(6):819-22. PubMed ID: 12688497 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]