These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 15224986)

  • 41. Presynaptic and postsynaptic modulation of glutamatergic synaptic transmission by activation of alpha(1)- and beta-adrenoceptors in layer V pyramidal neurons of rat cerebral cortex.
    Kobayashi M; Kojima M; Koyanagi Y; Adachi K; Imamura K; Koshikawa N
    Synapse; 2009 Apr; 63(4):269-81. PubMed ID: 19116948
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Selective destruction of medial septal cholinergic neurons attenuates pyramidal cell suppression, but not excitation in dorsal hippocampus field CA1 induced by subcutaneous injection of formalin.
    Zheng F; Khanna S
    Neuroscience; 2001; 103(4):985-98. PubMed ID: 11301206
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hippocampal theta rhythm in anesthetized rats: role of AMPA glutamate receptors.
    Puma C; Bizot JC
    Neuroreport; 1999 Aug; 10(11):2297-300. PubMed ID: 10439452
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characteristics of CA1 activation through the hippocampal trisynaptic pathway in the unanaesthetized rat.
    Herreras O; Solis JM; Martin del Rio R; Lerma J
    Brain Res; 1987 Jun; 413(1):75-86. PubMed ID: 3036318
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Membrane and circuit properties of lateral septum neurons: relationships with hippocampal rhythms.
    Pedemonte M; Barrenechea C; Nuñez A; Gambini JP; García-Austt E
    Brain Res; 1998 Jul; 800(1):145-53. PubMed ID: 9685619
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optogenetic Activation of Septal Glutamatergic Neurons Drive Hippocampal Theta Rhythms.
    Robinson J; Manseau F; Ducharme G; Amilhon B; Vigneault E; El Mestikawy S; Williams S
    J Neurosci; 2016 Mar; 36(10):3016-23. PubMed ID: 26961955
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Long-term depression of excitatory transmission in the lateral septum.
    Chaichim C; Cannings MJ; Dumlao G; Power JM
    J Neurophysiol; 2021 May; 125(5):1825-1832. PubMed ID: 33852819
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Adenosine depresses excitatory but not fast inhibitory synaptic transmission in area CA1 of the rat hippocampus.
    Lambert NA; Teyler TJ
    Neurosci Lett; 1991 Jan; 122(1):50-2. PubMed ID: 1676145
    [TBL] [Abstract][Full Text] [Related]  

  • 49. NBQX is a selective non-NMDA receptor antagonist in rat hippocampal slice.
    Goldstein JM; Litwin LC
    Mol Chem Neuropathol; 1993; 18(1-2):145-52. PubMed ID: 8385465
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modulation of theta rhythmicity in the medial septal neurons and the hippocampal electroencephalogram in the awake rabbit via actions at noradrenergic alpha2-receptors.
    Kitchigina VF; Kutyreva EV; Brazhnik ES
    Neuroscience; 2003; 120(2):509-21. PubMed ID: 12890520
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cordycepin suppresses excitatory synaptic transmission in rat hippocampal slices via a presynaptic mechanism.
    Yao LH; Huang JN; Li CH; Li HH; Yan WW; Cai ZL; Liu WX; Xiao P
    CNS Neurosci Ther; 2013 Apr; 19(4):216-21. PubMed ID: 23419191
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Glutamatergic neurons of the mouse medial septum and diagonal band of Broca synaptically drive hippocampal pyramidal cells: relevance for hippocampal theta rhythm.
    Huh CY; Goutagny R; Williams S
    J Neurosci; 2010 Nov; 30(47):15951-61. PubMed ID: 21106833
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Disruption of Hippocampal Multisynaptic Networks by General Anesthetics.
    Kuo MC; Leung LS
    Anesthesiology; 2017 Nov; 127(5):838-851. PubMed ID: 28902674
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Major impairments of glutamatergic transmission and long-term synaptic plasticity in the hippocampus of mice lacking the melanin-concentrating hormone receptor-1.
    Pachoud B; Adamantidis A; Ravassard P; Luppi PH; Grisar T; Lakaye B; Salin PA
    J Neurophysiol; 2010 Sep; 104(3):1417-25. PubMed ID: 20592115
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hippocampal afterdischarges after GABA(B)-receptor blockade in the freely moving rat.
    Leung LS; Canning KJ; Shen B
    Epilepsia; 2005 Feb; 46(2):203-16. PubMed ID: 15679501
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Endogenous adenosine release from hippocampal slices: excitatory amino acid agonists stimulate release, antagonists reduce the electrically-evoked release.
    Pedata F; Pazzagli M; Pepeu G
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Nov; 344(5):538-43. PubMed ID: 1811170
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Non-NMDA-mediated transmission of somatosensory-evoked potentials in the rat thalamus.
    Block F; Schwarz M; Sontag KH
    Brain Res Bull; 1993; 31(5):449-54. PubMed ID: 7684314
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Current source density analysis of the hippocampal theta rhythm: associated sustained potentials and candidate synaptic generators.
    Brankack J; Stewart M; Fox SE
    Brain Res; 1993 Jul; 615(2):310-27. PubMed ID: 8364740
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vitro modulation of hippocampal pyramidal cell response by quinolones: effects of HA 966 and gamma-hydroxybutyric acid.
    Dimpfel W; Dalhoff A; von Keutz E
    Antimicrob Agents Chemother; 1996 Nov; 40(11):2573-6. PubMed ID: 8913467
    [TBL] [Abstract][Full Text] [Related]  

  • 60. MK-801 and NBQX prevent electrically induced status epilepticus.
    Young D; Dragunow M
    Neuroreport; 1994 Jul; 5(12):1481-4. PubMed ID: 7948843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.