These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 15225029)
1. Biological bottom-up assembly of antibody nanotubes on patterned antigen arrays. Nuraje N; Banerjee IA; MacCuspie RI; Yu L; Matsui H J Am Chem Soc; 2004 Jul; 126(26):8088-9. PubMed ID: 15225029 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous targeted immobilization of anti-human IgG-coated nanotubes and anti-mouse IgG-coated nanotubes on the complementary antigen-patterned surfaces via biological molecular recognition. Zhao Z; Banerjee IA; Matsui H J Am Chem Soc; 2005 Jun; 127(25):8930-1. PubMed ID: 15969552 [TBL] [Abstract][Full Text] [Related]
3. Directed immobilization of reduced antibody fragments onto a novel SAM on gold for myoglobin impedance immunosensing. Billah MM; Hodges CS; Hays HC; Millner PA Bioelectrochemistry; 2010 Nov; 80(1):49-54. PubMed ID: 20880761 [TBL] [Abstract][Full Text] [Related]
4. Application of host-guest chemistry in nanotube-based device fabrication: photochemically controlled immobilization of azobenzene nanotubes on patterned alpha-CD monolayer/Au substrates via molecular recognition. Banerjee IA; Yu L; Matsui H J Am Chem Soc; 2003 Aug; 125(32):9542-3. PubMed ID: 12903992 [TBL] [Abstract][Full Text] [Related]
5. An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. Chen RJ; Choi HC; Bangsaruntip S; Yenilmez E; Tang X; Wang Q; Chang YL; Dai H J Am Chem Soc; 2004 Feb; 126(5):1563-8. PubMed ID: 14759216 [TBL] [Abstract][Full Text] [Related]
6. Improving neuron-to-electrode surface attachment via alkanethiol self-assembly: an alternating current impedance study. Slaughter GE; Bieberich E; Wnek GE; Wynne KJ; Guiseppi-Elie A Langmuir; 2004 Aug; 20(17):7189-200. PubMed ID: 15301505 [TBL] [Abstract][Full Text] [Related]
7. Attachment of ferrocene nanotubes on beta-cyclodextrin self-assembled monolayers with molecular recognitions. Chen YF; Banerjee IA; Yu L; Djalali R; Matsui H Langmuir; 2004 Sep; 20(20):8409-13. PubMed ID: 15379452 [TBL] [Abstract][Full Text] [Related]
8. Chemical modifications of AFM tips for the study of molecular recognition events. Barattin R; Voyer N Chem Commun (Camb); 2008 Apr; (13):1513-32. PubMed ID: 18354789 [TBL] [Abstract][Full Text] [Related]
9. Aqueous dispersion, surface thiolation, and direct self-assembly of carbon nanotubes on gold. Kocharova N; Aäritalo T; Leiro J; Kankare J; Lukkari J Langmuir; 2007 Mar; 23(6):3363-71. PubMed ID: 17291020 [TBL] [Abstract][Full Text] [Related]
10. Nanografting de novo proteins onto gold surfaces. Hu Y; Das A; Hecht MH; Scoles G Langmuir; 2005 Sep; 21(20):9103-9. PubMed ID: 16171339 [TBL] [Abstract][Full Text] [Related]
11. Gold surface functionalization and patterning for specific immobilization of olfactory receptors carried by nanosomes. Vidic J; Pla-Roca M; Grosclaude J; Persuy MA; Monnerie R; Caballero D; Errachid A; Hou Y; Jaffrezic-Renault N; Salesse R; Pajot-Augy E; Samitier J Anal Chem; 2007 May; 79(9):3280-90. PubMed ID: 17394286 [TBL] [Abstract][Full Text] [Related]
12. Selective assembly and guiding of actomyosin using carbon nanotube network monolayer patterns. Byun KE; Kim MG; Chase PB; Hong S Langmuir; 2007 Sep; 23(19):9535-9. PubMed ID: 17705520 [TBL] [Abstract][Full Text] [Related]
14. Building of an immunosensor: how can the composition and structure of the thiol attachment layer affect the immunosensor efficiency? Briand E; Salmain M; Herry JM; Perrot H; Compère C; Pradier CM Biosens Bioelectron; 2006 Sep; 22(3):440-8. PubMed ID: 16806887 [TBL] [Abstract][Full Text] [Related]
15. Detection of tumor markers using single-walled carbon nanotube field effect transistors. Park DW; Kim YH; Kim BS; So HM; Won K; Lee JO; Kong KJ; Chang H J Nanosci Nanotechnol; 2006 Nov; 6(11):3499-502. PubMed ID: 17252798 [TBL] [Abstract][Full Text] [Related]
17. Dendrimer-functionalized self-assembled monolayers as a surface plasmon resonance sensor surface. Mark SS; Sandhyarani N; Zhu C; Campagnolo C; Batt CA Langmuir; 2004 Aug; 20(16):6808-17. PubMed ID: 15274589 [TBL] [Abstract][Full Text] [Related]
18. Atomic force spectroscopy-based study of antibody pesticide interactions for characterization of immunosensor surface. Kaur J; Singh KV; Schmid AH; Varshney GC; Suri CR; Raje M Biosens Bioelectron; 2004 Sep; 20(2):284-93. PubMed ID: 15308233 [TBL] [Abstract][Full Text] [Related]
19. Selective immobilization of proteins on gold dot arrays and characterization using chemical force microscopy. Kim H; Park JH; Cho IH; Kim SK; Paek SH; Lee H J Colloid Interface Sci; 2009 Jun; 334(2):161-6. PubMed ID: 19406421 [TBL] [Abstract][Full Text] [Related]
20. Mediated amperometric immunosensing using single walled carbon nanotube forests. O'Connor M; Kim SN; Killard AJ; Forster RJ; Smyth MR; Papadimitrakopoulos F; Rusling JF Analyst; 2004 Dec; 129(12):1176-80. PubMed ID: 15565214 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]