BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 15225312)

  • 1. Functional consequences of single:double ring transitions in chaperonins: life in the cold.
    Ferrer M; Lünsdorf H; Chernikova TN; Yakimov M; Timmis KN; Golyshin PN
    Mol Microbiol; 2004 Jul; 53(1):167-82. PubMed ID: 15225312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of a temperature-sensitive esterase in a novel chaperone-based Escherichia coli strain.
    Ferrer M; Chernikova TN; Timmis KN; Golyshin PN
    Appl Environ Microbiol; 2004 Aug; 70(8):4499-504. PubMed ID: 15294778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-expression of chaperonin GroEL/GroES enhances in vivo folding of yeast mitochondrial aconitase and alters the growth characteristics of Escherichia coli.
    Gupta P; Aggarwal N; Batra P; Mishra S; Chaudhuri TK
    Int J Biochem Cell Biol; 2006; 38(11):1975-85. PubMed ID: 16822698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaperonins govern growth of Escherichia coli at low temperatures.
    Ferrer M; Chernikova TN; Yakimov MM; Golyshin PN; Timmis KN
    Nat Biotechnol; 2003 Nov; 21(11):1266-7. PubMed ID: 14595348
    [No Abstract]   [Full Text] [Related]  

  • 5. The origins and consequences of asymmetry in the chaperonin reaction cycle.
    Burston SG; Ranson NA; Clarke AR
    J Mol Biol; 1995 May; 249(1):138-52. PubMed ID: 7776368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An arginine residue (Arg101), which is conserved in many GroEL homologues, is required for interactions between the two heptameric rings.
    Jones S; Wallington EJ; George R; Lund PA
    J Mol Biol; 1998 Oct; 282(4):789-800. PubMed ID: 9743627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low temperature-induced systems failure in Escherichia coli: insights from rescue by cold-adapted chaperones.
    Strocchi M; Ferrer M; Timmis KN; Golyshin PN
    Proteomics; 2006 Jan; 6(1):193-206. PubMed ID: 16302275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GroEL from the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC 125: molecular characterization and gene cloning.
    Tosco A; Birolo L; Madonna S; Lolli G; Sannia G; Marino G
    Extremophiles; 2003 Feb; 7(1):17-28. PubMed ID: 12579376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning, expression, and characterization of chaperonin-60 and chaperonin-10 from a thermophilic bacterium, Thermus thermophilus HB8.
    Amada K; Yohda M; Odaka M; Endo I; Ishii N; Taguchi H; Yoshida M
    J Biochem; 1995 Aug; 118(2):347-54. PubMed ID: 8543569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From minichaperone to GroEL 2: importance of avidity of the multisite ring structure.
    Chatellier J; Hill F; Fersht AR
    J Mol Biol; 2000 Dec; 304(5):883-96. PubMed ID: 11124034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and characterization of Chromatium vinosum GroEL and GroES proteins overexpressed in Escherichia coli cells lacking the endogenous groESL operon.
    Dionisi HM; Viale AM
    Protein Expr Purif; 1998 Nov; 14(2):275-82. PubMed ID: 9790891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a GroES (CPN10)-related sequence motif in the GroEL (CPN60) chaperonins.
    Gupta RS
    Biochem Mol Biol Int; 1994 Jun; 33(3):591-5. PubMed ID: 7951076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From minichaperone to GroEL 3: properties of an active single-ring mutant of GroEL.
    Chatellier J; Hill F; Foster NW; Goloubinoff P; Fersht AR
    J Mol Biol; 2000 Dec; 304(5):897-910. PubMed ID: 11124035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of the GroESLx chaperonins from the symbiotic X-bacteria in Amoeba proteus.
    Jung GH; Ahn TI
    Protein Expr Purif; 2001 Dec; 23(3):459-67. PubMed ID: 11722184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Affinity purification of fusion chaperonin Cpn60-(His)(6) from thermophilic bacterium Bacillus strain MS and its use in facilitating protein refolding and preventing heat denaturation.
    Teshima T; Kohda J; Kondo A; Yohda M; Tamura A; Fukuda H
    Biotechnol Prog; 2000; 16(3):442-6. PubMed ID: 10835247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The chaperonins of Synechocystis PCC 6803 differ in heat inducibility and chaperone activity.
    Kovács E; van der Vies SM; Glatz A; Török Z; Varvasovszki V; Horváth I; Vígh L
    Biochem Biophys Res Commun; 2001 Dec; 289(4):908-15. PubMed ID: 11735133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A chaperonin from a thermophilic bacterium, Thermus thermophilus.
    Yoshida M; Ishii N; Muneyuki E; Taguchi H
    Philos Trans R Soc Lond B Biol Sci; 1993 Mar; 339(1289):305-12. PubMed ID: 8098535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The lower hydrolysis of ATP by the stress protein GroEL is a major factor responsible for the diminished chaperonin activity at low temperature.
    Mendoza JA; Dulin P; Warren T
    Cryobiology; 2000 Dec; 41(4):319-23. PubMed ID: 11222029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of chaperonin-60 from Paracoccus denitrificans.
    Fukami TA; Yohda M; Taguchi H; Yoshida M; Miki K
    J Mol Biol; 2001 Sep; 312(3):501-9. PubMed ID: 11563912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-temperature features of the psychrophilic chaperonin from Pseudoalteromonas haloplanktis.
    Hertle E; Ursinus A; Martin J
    Arch Microbiol; 2024 Jun; 206(7):299. PubMed ID: 38861015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.