BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 1522587)

  • 1. Topology fingerprint approach to the inverse protein folding problem.
    Godzik A; Kolinski A; Skolnick J
    J Mol Biol; 1992 Sep; 227(1):227-38. PubMed ID: 1522587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural alignment of globins, phycocyanins and colicin A.
    Holm L; Sander C
    FEBS Lett; 1993 Jan; 315(3):301-6. PubMed ID: 8422921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the physiologically equivalent proteins cytochrome c6 and plastocyanin on the basis of their electrostatic potentials. Tryptophan 63 in cytochrome c6 may be isofunctional with tyrosine 83 in plastocyanin.
    Ullmann GM; Hauswald M; Jensen A; Kostić NM; Knapp EW
    Biochemistry; 1997 Dec; 36(51):16187-96. PubMed ID: 9405052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the structures of globins and phycocyanins: evidence for evolutionary relationship.
    Pastore A; Lesk AM
    Proteins; 1990; 8(2):133-55. PubMed ID: 2235993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A procedure for the automatic determination of hydrophobic cores in protein structures.
    Swindells MB
    Protein Sci; 1995 Jan; 4(1):93-102. PubMed ID: 7773181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In search of the ideal protein sequence.
    Godzik A
    Protein Eng; 1995 May; 8(5):409-16. PubMed ID: 8532661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active site structures and the redox properties of blue copper proteins: atomic resolution structure of azurin II and electronic structure calculations of azurin, plastocyanin and stellacyanin.
    Paraskevopoulos K; Sundararajan M; Surendran R; Hough MA; Eady RR; Hillier IH; Hasnain SS
    Dalton Trans; 2006 Jul; (25):3067-76. PubMed ID: 16786065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Underlying hydrophobic sequence periodicity of protein tertiary structure.
    Silverman BD
    J Biomol Struct Dyn; 2005 Feb; 22(4):411-23. PubMed ID: 15588105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of common three-dimensional substructures in proteins.
    Vriend G; Sander C
    Proteins; 1991; 11(1):52-8. PubMed ID: 1660134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence-structure matching in globular proteins: application to supersecondary and tertiary structure determination.
    Godzik A; Skolnick J
    Proc Natl Acad Sci U S A; 1992 Dec; 89(24):12098-102. PubMed ID: 1465445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of c-phycocyanin from the thermophilic cyanobacterium Synechococcus vulcanus at 2.5 A: structural implications for thermal stability in phycobilisome assembly.
    Adir N; Dobrovetsky Y; Lerner N
    J Mol Biol; 2001 Oct; 313(1):71-81. PubMed ID: 11601847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational approaches to structural and functional analysis of plastocyanin and other blue copper proteins.
    De Rienzo F; Gabdoulline RR; Wade RC; Sola M; Menziani MC
    Cell Mol Life Sci; 2004 May; 61(10):1123-42. PubMed ID: 15141299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein topology recognition from secondary structure sequences: application of the hidden Markov models to the alpha class proteins.
    Di Francesco V; Garnier J; Munson PJ
    J Mol Biol; 1997 Mar; 267(2):446-63. PubMed ID: 9096237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein fold recognition by threading: comparison of algorithms and analysis of results.
    Westhead DR; Collura VP; Eldridge MD; Firth MA; Li J; Murray CW
    Protein Eng; 1995 Dec; 8(12):1197-1204. PubMed ID: 8869632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionally specified protein signatures distinctive for each of the different blue copper proteins.
    Giri AV; Anishetty S; Gautam P
    BMC Bioinformatics; 2004 Sep; 5():127. PubMed ID: 15357880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The complete amino acid sequence of R-phycocyanin-I alpha and beta subunits from the red alga Porphyridium cruentum. Structural and phylogenetic relationships of the phycocyanins within the phycobiliprotein families.
    Ducret A; Sidler W; Frank G; Zuber H
    Eur J Biochem; 1994 Apr; 221(1):563-80. PubMed ID: 8168545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volume changes in protein evolution.
    Gerstein M; Sonnhammer EL; Chothia C
    J Mol Biol; 1994 Mar; 236(4):1067-78. PubMed ID: 8120887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new approach to protein fold recognition.
    Jones DT; Taylor WR; Thornton JM
    Nature; 1992 Jul; 358(6381):86-9. PubMed ID: 1614539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of C-phycocyanin from Cyanidium caldarium provides a new perspective on phycobilisome assembly.
    Stec B; Troxler RF; Teeter MM
    Biophys J; 1999 Jun; 76(6):2912-21. PubMed ID: 10354419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Monte Carlo simulations of a new lattice model of globular protein folding, structure and dynamics.
    Skolnick J; Kolinski A
    J Mol Biol; 1991 Sep; 221(2):499-531. PubMed ID: 1920430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.