These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 15225927)

  • 1. Computer simulation for prediction of performance and thermodynamic parameters of high energy materials.
    Muthurajan H; Sivabalan R; Talawar MB; Asthana SN
    J Hazard Mater; 2004 Aug; 112(1-2):17-33. PubMed ID: 15225927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of heat of formation and related parameters of high energy materials.
    Muthurajan H; Sivabalan R; Talawar MB; Anniyappan M; Venugopalan S
    J Hazard Mater; 2006 May; 133(1-3):30-45. PubMed ID: 16300883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new computer code to evaluate detonation performance of high explosives and their thermochemical properties, part I.
    Keshavarz MH; Motamedoshariati H; Moghayadnia R; Nazari HR; Azarniamehraban J
    J Hazard Mater; 2009 Dec; 172(2-3):1218-28. PubMed ID: 19713037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer code to predict the heat of explosion of high energy materials.
    Muthurajan H; Sivabalan R; Pon Saravanan N; Talawar MB
    J Hazard Mater; 2009 Jan; 161(2-3):714-7. PubMed ID: 18513863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer code for the optimization of performance parameters of mixed explosive formulations.
    Muthurajan H; Sivabalan R; Talawar MB; Venugopalan S; Gandhe BR
    J Hazard Mater; 2006 Aug; 136(3):475-81. PubMed ID: 16530944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of performance of non-ideal aluminized explosives.
    Keshavarz MH; Mofrad RT; Poor KE; Shokrollahi A; Zali A; Yousefi MH
    J Hazard Mater; 2006 Sep; 137(1):83-7. PubMed ID: 16621262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of detonation performance of CHNO and CHNOAl explosives through molecular structure.
    Keshavarz MH
    J Hazard Mater; 2009 Jul; 166(2-3):1296-301. PubMed ID: 19157709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical prediction of steady-state detonation properties of condensed-phase explosives.
    Cengiz F; Ulas A
    J Hazard Mater; 2009 Dec; 172(2-3):1646-51. PubMed ID: 19747772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple correlation for predicting detonation velocity of ideal and non-ideal explosives.
    Keshavarz MH
    J Hazard Mater; 2009 Jul; 166(2-3):762-9. PubMed ID: 19135789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple approach for determining detonation velocity of high explosive at any loading density.
    Keshavarz MH
    J Hazard Mater; 2005 May; 121(1-3):31-6. PubMed ID: 15885403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The simplest method for calculating energy output and Gurney velocity of explosives.
    Keshavarz MH; Semnani A
    J Hazard Mater; 2006 Apr; 131(1-3):1-5. PubMed ID: 16236438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, characterization and thermal studies on furazan- and tetrazine-based high energy materials.
    Talawar MB; Sivabalan R; Senthilkumar N; Prabhu G; Asthana SN
    J Hazard Mater; 2004 Sep; 113(1-3):11-25. PubMed ID: 15363510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple method to assess detonation temperature without using any experimental data and computer code.
    Keshavarz MH; Nazari HR
    J Hazard Mater; 2006 May; 133(1-3):129-34. PubMed ID: 16297533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetic characteristics of transition metal complexes.
    Wojewódka A; Bełzowski J; Wilk Z; Staś J
    J Hazard Mater; 2009 Nov; 171(1-3):1175-7. PubMed ID: 19631466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of natural convection on thermal explosion in a closed vessel.
    Liu TY; Campbell AN; Cardoso SS; Hayhurst AN
    Phys Chem Chem Phys; 2008 Sep; 10(36):5521-30. PubMed ID: 18956086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detonation temperature of high explosives from structural parameters.
    Keshavarz MH
    J Hazard Mater; 2006 Oct; 137(3):1303-8. PubMed ID: 16806689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical studies on the structure and detonation properties of amino-, methyl-, and nitro-substituted 3,4,5-trinitro-1H-pyrazoles.
    Ravi P; Gore GM; Venkatesan V; Tewari SP; Sikder AK
    J Hazard Mater; 2010 Nov; 183(1-3):859-65. PubMed ID: 20728272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimentally validated 3-D simulation of shock waves generated by dense explosives in confined complex geometries.
    Rigas F; Sklavounos S
    J Hazard Mater; 2005 May; 121(1-3):23-30. PubMed ID: 15885402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Velocity of detonation at any initial density without using heat of formation of explosives.
    Keshavarz MH; Mofrad RT; Alamdari RF; Moghadas MH; Mostofizadeh AR; Sadeghi H
    J Hazard Mater; 2006 Oct; 137(3):1328-32. PubMed ID: 16777322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple determination of performance of explosives without using any experimental data.
    Keshavarz MH
    J Hazard Mater; 2005 Mar; 119(1-3):25-9. PubMed ID: 15752845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.