These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 15226448)

  • 1. The IkappaB kinase complex and NF-kappaB act as master regulators of lipopolysaccharide-induced gene expression and control subordinate activation of AP-1.
    Krappmann D; Wegener E; Sunami Y; Esen M; Thiel A; Mordmuller B; Scheidereit C
    Mol Cell Biol; 2004 Jul; 24(14):6488-500. PubMed ID: 15226448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ras and mitogen-activated protein kinase kinase kinase-1 coregulate activator protein-1- and nuclear factor-kappaB-mediated gene expression in airway epithelial cells.
    Zhou L; Tan A; Iasvovskaia S; Li J; Lin A; Hershenson MB
    Am J Respir Cell Mol Biol; 2003 Jun; 28(6):762-9. PubMed ID: 12600818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient activation of NF-kappaB through a TAK1/IKK kinase pathway by TGF-beta1 inhibits AP-1/SMAD signaling and apoptosis: implications in liver tumor formation.
    Arsura M; Panta GR; Bilyeu JD; Cavin LG; Sovak MA; Oliver AA; Factor V; Heuchel R; Mercurio F; Thorgeirsson SS; Sonenshein GE
    Oncogene; 2003 Jan; 22(3):412-25. PubMed ID: 12545162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation and function of IKK and IKK-related kinases.
    Häcker H; Karin M
    Sci STKE; 2006 Oct; 2006(357):re13. PubMed ID: 17047224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NF-kappaB and AP-1 connection: mechanism of NF-kappaB-dependent regulation of AP-1 activity.
    Fujioka S; Niu J; Schmidt C; Sclabas GM; Peng B; Uwagawa T; Li Z; Evans DB; Abbruzzese JL; Chiao PJ
    Mol Cell Biol; 2004 Sep; 24(17):7806-19. PubMed ID: 15314185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-κB-induced inflammatory mediators production in RAW 264.7 cells.
    Endale M; Park SC; Kim S; Kim SH; Yang Y; Cho JY; Rhee MH
    Immunobiology; 2013 Dec; 218(12):1452-67. PubMed ID: 23735482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells.
    Paik YH; Schwabe RF; Bataller R; Russo MP; Jobin C; Brenner DA
    Hepatology; 2003 May; 37(5):1043-55. PubMed ID: 12717385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulus specificity of gene expression programs determined by temporal control of IKK activity.
    Werner SL; Barken D; Hoffmann A
    Science; 2005 Sep; 309(5742):1857-61. PubMed ID: 16166517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paclitaxel-induced immune suppression is associated with NF-kappaB activation via conventional PKC isotypes in lipopolysaccharide-stimulated 70Z/3 pre-B lymphocyte tumor cells.
    Lee M; Jeon YJ
    Mol Pharmacol; 2001 Feb; 59(2):248-53. PubMed ID: 11160860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway.
    Senftleben U; Cao Y; Xiao G; Greten FR; Krähn G; Bonizzi G; Chen Y; Hu Y; Fong A; Sun SC; Karin M
    Science; 2001 Aug; 293(5534):1495-9. PubMed ID: 11520989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tanshinone IIA inhibits LPS-induced NF-kappaB activation in RAW 264.7 cells: possible involvement of the NIK-IKK, ERK1/2, p38 and JNK pathways.
    Jang SI; Kim HJ; Kim YJ; Jeong SI; You YO
    Eur J Pharmacol; 2006 Aug; 542(1-3):1-7. PubMed ID: 16797002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coexpression of proangiogenic factors IL-8 and VEGF by human head and neck squamous cell carcinoma involves coactivation by MEK-MAPK and IKK-NF-kappaB signal pathways.
    Bancroft CC; Chen Z; Dong G; Sunwoo JB; Yeh N; Park C; Van Waes C
    Clin Cancer Res; 2001 Feb; 7(2):435-42. PubMed ID: 11234901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity.
    Karin M; Ben-Neriah Y
    Annu Rev Immunol; 2000; 18():621-63. PubMed ID: 10837071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the MIR155 host gene in physiological and pathological processes.
    Elton TS; Selemon H; Elton SM; Parinandi NL
    Gene; 2013 Dec; 532(1):1-12. PubMed ID: 23246696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of the human RANTES gene promoter in a macrophage cell line by lipopolysaccharide is dependent on stress-activated protein kinases and the IkappaB kinase cascade: implications for exacerbation of allergic inflammation by environmental pollutants.
    Hiura TS; Kempiak SJ; Nel AE
    Clin Immunol; 1999 Mar; 90(3):287-301. PubMed ID: 10075858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen peroxide-mediated inhibition of lipopolysaccharide-stimulated inhibitory kappa B kinase activity in rat aortic smooth muscle cells.
    Torrie LJ; MacKenzie CJ; Paul A; Plevin R
    Br J Pharmacol; 2001 Sep; 134(2):393-401. PubMed ID: 11564658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The flavonoid luteolin prevents lipopolysaccharide-induced NF-kappaB signalling and gene expression by blocking IkappaB kinase activity in intestinal epithelial cells and bone-marrow derived dendritic cells.
    Kim JS; Jobin C
    Immunology; 2005 Jul; 115(3):375-87. PubMed ID: 15946255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An NF-kappaB-dependent role for JunB in the induction of proinflammatory cytokines in LPS-activated bone marrow-derived dendritic cells.
    Gomard T; Michaud HA; Tempé D; Thiolon K; Pelegrin M; Piechaczyk M
    PLoS One; 2010 Mar; 5(3):e9585. PubMed ID: 20221401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Achieving stability of lipopolysaccharide-induced NF-kappaB activation.
    Covert MW; Leung TH; Gaston JE; Baltimore D
    Science; 2005 Sep; 309(5742):1854-7. PubMed ID: 16166516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flagellin and lipopolysaccharide up-regulation of IL-6 and CXCLi2 gene expression in chicken heterophils is mediated by ERK1/2-dependent activation of AP-1 and NF-kappaB signaling pathways.
    Kogut MH; Genovese KJ; He H; Kaiser P
    Innate Immun; 2008 Aug; 14(4):213-22. PubMed ID: 18669607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.