These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 1522724)
1. The distribution of fluid forces on model arterial endothelium using computational fluid dynamics. Satcher RL; Bussolari SR; Gimbrone MA; Dewey CF J Biomech Eng; 1992 Aug; 114(3):309-16. PubMed ID: 1522724 [TBL] [Abstract][Full Text] [Related]
2. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis". Hewlin RL; Kizito JP Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548 [TBL] [Abstract][Full Text] [Related]
3. Numerical 3D-stimulation of pulsatile wall shear stress in an arterial T-bifurcation model. Perktold K; Peter R J Biomed Eng; 1990 Jan; 12(1):2-12. PubMed ID: 2296164 [TBL] [Abstract][Full Text] [Related]
5. Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers. Barbee KA; Mundel T; Lal R; Davies PF Am J Physiol; 1995 Apr; 268(4 Pt 2):H1765-72. PubMed ID: 7733381 [TBL] [Abstract][Full Text] [Related]
6. Comparison of morphological and rheological conditions between conventional and eversion carotid endarterectomy using computational fluid dynamics--a pilot study. Demirel S; Chen D; Mei Y; Partovi S; von Tengg-Kobligk H; Dadrich M; Böckler D; Kauczor HU; Müller-Eschner M Vascular; 2015 Oct; 23(5):474-82. PubMed ID: 25298137 [TBL] [Abstract][Full Text] [Related]
7. Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration. Ponalagusamy R; Priyadharshini S Comput Methods Programs Biomed; 2017 Apr; 142():31-41. PubMed ID: 28325445 [TBL] [Abstract][Full Text] [Related]
8. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution. Kabinejadian F; Ghista DN Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834 [TBL] [Abstract][Full Text] [Related]
9. A numerical study of the shape of the surface separating flow into branches in microvascular bifurcations. Enden G; Popel AS J Biomech Eng; 1992 Aug; 114(3):398-405. PubMed ID: 1522734 [TBL] [Abstract][Full Text] [Related]
10. Effects of arterial compliance and non-Newtonian rheology on correlations between intimal thickness and wall shear. Friedman MH; Bargeron CB; Duncan DD; Hutchins GM; Mark FF J Biomech Eng; 1992 Aug; 114(3):317-20. PubMed ID: 1326063 [TBL] [Abstract][Full Text] [Related]
11. Fenestral pore size in the internal elastic lamina affects transmural flow distribution in the artery wall. Tada S; Tarbell JM Ann Biomed Eng; 2001 Jun; 29(6):456-66. PubMed ID: 11459339 [TBL] [Abstract][Full Text] [Related]
12. Elementary mechanics of the endothelium of blood vessels. Fung YC; Liu SQ J Biomech Eng; 1993 Feb; 115(1):1-12. PubMed ID: 8445886 [TBL] [Abstract][Full Text] [Related]
13. Shear stress gradient over endothelial cells in a curved microchannel system. Frame MD; Chapman GB; Makino Y; Sarelius IH Biorheology; 1998; 35(4-5):245-61. PubMed ID: 10474653 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous imaging of blood flow dynamics and vascular remodelling during development. Ghaffari S; Leask RL; Jones EA Development; 2015 Dec; 142(23):4158-67. PubMed ID: 26443647 [TBL] [Abstract][Full Text] [Related]
15. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate. Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592 [TBL] [Abstract][Full Text] [Related]
16. Developing steady laminar flow through uniform straight tubes with varying wall cross curvature. Naili S; Thiriet M; Ribreau C Comput Methods Biomech Biomed Engin; 2004 Dec; 7(6):319-30. PubMed ID: 15621652 [TBL] [Abstract][Full Text] [Related]
17. Wall shear stress--an important determinant of endothelial cell function and structure--in the arterial system in vivo. Discrepancies with theory. Reneman RS; Arts T; Hoeks AP J Vasc Res; 2006; 43(3):251-69. PubMed ID: 16491020 [TBL] [Abstract][Full Text] [Related]
18. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries. Damiano ER Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411 [TBL] [Abstract][Full Text] [Related]
19. Haemodynamic factors and the important role of local low static pressure in coronary wall thickening. Giannoglou GD; Soulis JV; Farmakis TM; Farmakis DM; Louridas GE Int J Cardiol; 2002 Nov; 86(1):27-40. PubMed ID: 12243848 [TBL] [Abstract][Full Text] [Related]
20. The study of the influence of flow on vascular endothelial biology. Nerem RM; Alexander RW; Chappell DC; Medford RM; Varner SE; Taylor WR Am J Med Sci; 1998 Sep; 316(3):169-75. PubMed ID: 9749558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]