These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 1522731)
1. Boundary element method analysis for the bioheat transfer equation. Chan CL J Biomech Eng; 1992 Aug; 114(3):358-65. PubMed ID: 1522731 [TBL] [Abstract][Full Text] [Related]
2. Application of different variants of the BEM in numerical modeling of bioheat transfer problems. Majchrzak E Mol Cell Biomech; 2013 Sep; 10(3):201-32. PubMed ID: 24396977 [TBL] [Abstract][Full Text] [Related]
3. A meshless point collocation treatment of transient bioheat problems. Bourantas GC; Loukopoulos VC; Burganos VN; Nikiforidis GC Int J Numer Method Biomed Eng; 2014 May; 30(5):587-601. PubMed ID: 24574248 [TBL] [Abstract][Full Text] [Related]
4. Fast heat propagation in living tissue caused by branching artery network. Gafiychuk VV; Lubashevsky IA; Datsko BY Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051920. PubMed ID: 16383658 [TBL] [Abstract][Full Text] [Related]
5. Truncated total least squares: a new regularization method for the solution of ECG inverse problems. Shou G; Xia L; Jiang M; Wei Q; Liu F; Crozier S IEEE Trans Biomed Eng; 2008 Apr; 55(4):1327-35. PubMed ID: 18390323 [TBL] [Abstract][Full Text] [Related]
7. Transient bioheat simulation of the laser-tissue interaction in human skin using hybrid finite element formulation. Zhang ZW; Wang H; Qin QH Mol Cell Biomech; 2012 Mar; 9(1):31-53. PubMed ID: 22428360 [TBL] [Abstract][Full Text] [Related]
8. The modelling of heating a tissue subjected to external electromagnetic field. Majchrzak E; Dziatkiewicz G; Paruch M Acta Bioeng Biomech; 2008; 10(2):29-37. PubMed ID: 19031995 [TBL] [Abstract][Full Text] [Related]
9. Analytical solutions of Pennes bio-heat transfer equation with a blood vessel. Huang HW; Chan CL; Roemer RB J Biomech Eng; 1994 May; 116(2):208-12. PubMed ID: 8078328 [TBL] [Abstract][Full Text] [Related]
10. Cellular neural network analysis for two-dimensional bioheat transfer equation. Niu JH; Wang HZ; Zhang HX; Yan JY; Zhu YS Med Biol Eng Comput; 2001 Sep; 39(5):601-4. PubMed ID: 11712659 [TBL] [Abstract][Full Text] [Related]
11. Bioheat transfer problem for one-dimensional spherical biological tissues. Kengne E; Lakhssassi A Math Biosci; 2015 Nov; 269():1-9. PubMed ID: 26327484 [TBL] [Abstract][Full Text] [Related]
12. A theoretical model for peripheral tissue heat transfer using the bioheat equation of Weinbaum and Jiji. Song WJ; Weinbaum S; Jiji LM J Biomech Eng; 1987 Feb; 109(1):72-8. PubMed ID: 3560884 [TBL] [Abstract][Full Text] [Related]
13. Numerical solution of non-linear dual-phase-lag bioheat transfer equation within skin tissues. Kumar D; Kumar P; Rai KN Math Biosci; 2017 Nov; 293():56-63. PubMed ID: 28859910 [TBL] [Abstract][Full Text] [Related]
14. A Matlab library for solving quasi-static volume conduction problems using the boundary element method. Stenroos M; Mäntynen V; Nenonen J Comput Methods Programs Biomed; 2007 Dec; 88(3):256-63. PubMed ID: 18022274 [TBL] [Abstract][Full Text] [Related]
15. An evaluation of the Weinbaum-Jiji bioheat equation for normal and hyperthermic conditions. Charny CK; Weinbaum S; Levin RL J Biomech Eng; 1990 Feb; 112(1):80-7. PubMed ID: 2308308 [TBL] [Abstract][Full Text] [Related]
16. The BEM-FDM model of thermal processes proceeding in the domain of the human finger. Majchrzak E; Mochnacki B; Tarasek D; Dziewoński M Acta Bioeng Biomech; 2015; 17(4):85-96. PubMed ID: 26898214 [TBL] [Abstract][Full Text] [Related]
17. Formulation of a statistical model of heat transfer in perfused tissue. Baish JW J Biomech Eng; 1994 Nov; 116(4):521-7. PubMed ID: 7869729 [TBL] [Abstract][Full Text] [Related]
18. BEM performance in calculation of pressure distribution in spline based segmented medical images. Pashaee A; Fatouraee N Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4476-9. PubMed ID: 18002999 [TBL] [Abstract][Full Text] [Related]
19. Solving the ECG forward problem by means of a meshless finite element method. Li ZS; Zhu SA; He B Phys Med Biol; 2007 Jul; 52(13):N287-96. PubMed ID: 17664567 [TBL] [Abstract][Full Text] [Related]
20. An axisymmetric boundary element formulation of sound wave propagation in fluids including viscous and thermal losses. Cutanda-Henríquez V; Juhl PM J Acoust Soc Am; 2013 Nov; 134(5):3409-18. PubMed ID: 24180751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]