These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 15227794)

  • 1. Obstacles to flow cytometric analysis of rumen microbial samples.
    Lipoglavsek L; Avgustin G
    Folia Microbiol (Praha); 2004; 49(2):183-6. PubMed ID: 15227794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of bacteria in human feces using 16S rRNA-hybridization, DNA-staining and flow cytometry.
    Vaahtovuo J; Korkeamäki M; Munukka E; Viljanen MK; Toivanen P
    J Microbiol Methods; 2005 Dec; 63(3):276-86. PubMed ID: 15935498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of flow cytometry for ecological monitoring of the rumen microbial ecosystem.
    Lipoglavsek L; Avgustin G
    Folia Microbiol (Praha); 2001; 46(1):53-5. PubMed ID: 11501477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Considerations in the use of fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy to characterize rumen methanogens and define their spatial distributions.
    Valle ER; Henderson G; Janssen PH; Cox F; Alexander TW; McAllister TA
    Can J Microbiol; 2015 Jun; 61(6):417-28. PubMed ID: 25924182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow sorting of marine bacterioplankton after fluorescence in situ hybridization.
    Sekar R; Fuchs BM; Amann R; Pernthaler J
    Appl Environ Microbiol; 2004 Oct; 70(10):6210-9. PubMed ID: 15466568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of mucosa-adhered microbiota of lambs and calves by the use of culture methods and fluorescent in situ hybridization coupled with flow cytometry techniques.
    Collado MC; Sanz Y
    Vet Microbiol; 2007 Apr; 121(3-4):299-306. PubMed ID: 17218070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ identification of carboxymethyl cellulose-digesting bacteria in the rumen of cattle fed alfalfa or triticale.
    Kong Y; Xia Y; Seviour R; He M; McAllister T; Forster R
    FEMS Microbiol Ecol; 2012 Apr; 80(1):159-67. PubMed ID: 22224860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow cytometric analysis of fluorescence in situ hybridization with dye dilution and DNA staining (flow-FISH-DDD) to determine telomere length dynamics in proliferating cells.
    Potter AJ; Wener MH
    Cytometry A; 2005 Nov; 68(1):53-8. PubMed ID: 16163702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous flow cytometric analysis of two cell surface markers, telomere length, and DNA content.
    Schmid I; Dagarag MD; Hausner MA; Matud JL; Just T; Effros RB; Jamieson BD
    Cytometry; 2002 Nov; 49(3):96-105. PubMed ID: 12442309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MiL-FISH: Multilabeled Oligonucleotides for Fluorescence In Situ Hybridization Improve Visualization of Bacterial Cells.
    Schimak MP; Kleiner M; Wetzel S; Liebeke M; Dubilier N; Fuchs BM
    Appl Environ Microbiol; 2016 Jan; 82(1):62-70. PubMed ID: 26475101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental improvements in combining CARD-FISH and flow cytometry for bacterial cell quantification.
    Manti A; Boi P; Amalfitano S; Puddu A; Papa S
    J Microbiol Methods; 2011 Dec; 87(3):309-15. PubMed ID: 21963488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FISH and chips: marine bacterial communities analyzed by flow cytometry based on microfluidics.
    Gerdts G; Luedke G
    J Microbiol Methods; 2006 Feb; 64(2):232-40. PubMed ID: 15979175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of a flow cytometric bead system with 16S rRNA-targeted oligonucleotide probes for bacteria detection.
    Zeng Y; Zhang D; Qi P
    Anal Bioanal Chem; 2019 Apr; 411(10):2161-2168. PubMed ID: 30859270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved fluorescent in situ hybridization method for detection of bacteria from activated sludge and river water by using DNA molecular beacons and flow cytometry.
    Lenaerts J; Lappin-Scott HM; Porter J
    Appl Environ Microbiol; 2007 Mar; 73(6):2020-3. PubMed ID: 17277208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fixation-free fluorescence in situ hybridization for targeted enrichment of microbial populations.
    Yilmaz S; Haroon MF; Rabkin BA; Tyson GW; Hugenholtz P
    ISME J; 2010 Oct; 4(10):1352-6. PubMed ID: 20505753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing cellular autofluorescence in flow cytometry: an in situ method.
    Mosiman VL; Patterson BK; Canterero L; Goolsby CL
    Cytometry; 1997 Jun; 30(3):151-6. PubMed ID: 9222101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms.
    Wallner G; Amann R; Beisker W
    Cytometry; 1993; 14(2):136-43. PubMed ID: 7679962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ analysis of native microbial communities in complex samples with high particulate loads.
    Barra Caracciolo A; Grenni P; Cupo C; Rossetti S
    FEMS Microbiol Lett; 2005 Dec; 253(1):55-8. PubMed ID: 16213678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of single bacterial cells using digoxigenin-labelled, rRNA-targeted oligonucleotides.
    Zarda B; Amann R; Wallner G; Schleifer KH
    J Gen Microbiol; 1991 Dec; 137(12):2823-30. PubMed ID: 1724265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [FISH-flow cytometry, a new tool for the analysis of intestinal microbiota].
    Fukiya S; Yokota A
    Seikagaku; 2008 May; 80(5):421-5. PubMed ID: 18575229
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.