These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 15227794)

  • 21. High-temperature fluorescent in situ hybridization for detecting Escherichia coli in seawater samples, using rRNA-targeted oligonucleotide probes and flow cytometry.
    Tang YZ; Gin KY; Lim TH
    Appl Environ Microbiol; 2005 Dec; 71(12):8157-64. PubMed ID: 16332798
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA microarray technology used for studying foodborne pathogens and microbial habitats: minireview.
    Al-Khaldi SF; Martin SA; Rasooly A; Evans JD
    J AOAC Int; 2002; 85(4):906-10. PubMed ID: 12180686
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flow cytometric sorting of fecal bacteria after in situ hybridization with polynucleotide probes.
    Bruder LM; Dörkes M; Fuchs BM; Ludwig W; Liebl W
    Syst Appl Microbiol; 2016 Oct; 39(7):464-475. PubMed ID: 27665238
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in the rumen bacterial community in response to sunflower oil and fish oil supplements in the diet of dairy sheep.
    Belenguer A; Toral PG; Frutos P; Hervás G
    J Dairy Sci; 2010 Jul; 93(7):3275-86. PubMed ID: 20630243
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromosome specific DNA hybridization in suspension for flow cytometric detection of chimerism in bone marrow transplantation and leukemia.
    Arkesteijn GJ; Erpelinck SL; Martens AC; Hagenbeek A
    Cytometry; 1995 Apr; 19(4):353-60. PubMed ID: 7796700
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescence in situ hybridization for the identification of environmental microbes.
    Pernthaler A; Pernthaler J
    Methods Mol Biol; 2007; 353():153-64. PubMed ID: 17332640
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Utilization of physiological and taxonomic fluorescent probes to study Lactobacilli cells and response to pH challenge.
    Olszewska MA; Kocot AM; Nynca A; Łaniewska-Trokenheim Ł
    Microbiol Res; 2016 Nov; 192():239-246. PubMed ID: 27664742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular monitoring of ruminal prevotellas.
    Tepsic K; Avgustin G
    Folia Microbiol (Praha); 2001; 46(1):87-90. PubMed ID: 11501487
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flow cytometric analysis of microorganisms.
    Sincock SA; Robinson JP
    Methods Cell Biol; 2001; 64():511-37. PubMed ID: 11070853
    [No Abstract]   [Full Text] [Related]  

  • 30. Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting.
    Nebe-von-Caron G; Stephens PJ; Hewitt CJ; Powell JR; Badley RA
    J Microbiol Methods; 2000 Sep; 42(1):97-114. PubMed ID: 11000436
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flow cytometric quantification of human chromosome specific repetitive DNA sequences by single and bicolor fluorescent in situ hybridization to lymphocyte interphase nuclei.
    van Dekken H; Arkesteijn GJ; Visser JW; Bauman JG
    Cytometry; 1990; 11(1):153-64. PubMed ID: 2307056
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A dual fluorescence flow cytometric analysis of bacterial adherence to mammalian host cells.
    Hara-Kaonga B; Pistole TG
    J Microbiol Methods; 2007 Apr; 69(1):37-43. PubMed ID: 17222473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorescent microsphere-based readout technology for multiplexed human single nucleotide polymorphism analysis and bacterial identification.
    Ye F; Li MS; Taylor JD; Nguyen Q; Colton HM; Casey WM; Wagner M; Weiner MP; Chen J
    Hum Mutat; 2001 Apr; 17(4):305-16. PubMed ID: 11295829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid detection and identification of pathogens in blood cultures by fluorescence in situ hybridization and flow cytometry.
    Kempf VA; Mändle T; Schumacher U; Schäfer A; Autenrieth IB
    Int J Med Microbiol; 2005 Apr; 295(1):47-55. PubMed ID: 15861816
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential sensitivity of 16S rRNA targeted oligonucleotide probes used for fluorescence in situ hybridization is a result of ribosomal higher order structure.
    Frischer ME; Floriani PJ; Nierzwicki-Bauer SA
    Can J Microbiol; 1996 Oct; 42(10):1061-71. PubMed ID: 8890483
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct fluorochrome-labeled DNA probes for direct fluorescent in situ hybridization to chromosomes.
    Schwarzacher T; Heslop-Harrison JS
    Methods Mol Biol; 1994; 28():167-76. PubMed ID: 7509692
    [No Abstract]   [Full Text] [Related]  

  • 37. Flow cytometry as an auxiliary tool for the selection of probiotic bacteria.
    Mudroňová D
    Benef Microbes; 2015; 6(5):727-34. PubMed ID: 25869279
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In situ detection of bacteria in calcified biofilms using FISH and CARD-FISH.
    Shiraishi F; Zippel B; Neu TR; Arp G
    J Microbiol Methods; 2008 Sep; 75(1):103-8. PubMed ID: 18571259
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of broad-scale differences in microbial community composition of two pristine forest soils.
    Chatzinotas A; Sandaa RA; Schönhuber W; Amann R; Daae FL; Torsvik V; Zeyer J; Hahn D
    Syst Appl Microbiol; 1998 Dec; 21(4):579-87. PubMed ID: 9924826
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques.
    Amann R; Fuchs BM
    Nat Rev Microbiol; 2008 May; 6(5):339-48. PubMed ID: 18414500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.