These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 15228119)

  • 1. A sensitive method for cadmium determination using an on-line polyurethane foam preconcentration system and thermospray flame furnace atomic absorption spectrometry.
    Tarley CR; Arruda MA
    Anal Sci; 2004 Jun; 20(6):961-6. PubMed ID: 15228119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermospray flame furnace-AAS determination of copper after on-line sorbent preconcentration using a system optimized by experimental designs.
    Tarley CR; Figueiredo Eda C; Matos GD
    Anal Sci; 2005 Nov; 21(11):1337-42. PubMed ID: 16317902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-line preconcentration using a resin functionalized with 3,4-dihydroxybenzoic acid for the determination of trace elements in biological samples by thermospray flame furnace atomic absorption spectrometry.
    Lemos VA; Bezerra MA; Amorim FA
    J Hazard Mater; 2008 Sep; 157(2-3):613-9. PubMed ID: 18280033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion Imprinted Polymer for Preconcentration and Determination of Ultra-Trace Cadmium, Employing Flow Injection Analysis with Thermo Spray Flame Furnace Atomic Absorption Spectrometry.
    do Lago AC; Marchioni C; Mendes TV; Wisniewski C; Fadini PS; Luccas PO
    Appl Spectrosc; 2016 Nov; 70(11):1842-1850. PubMed ID: 27449370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sample introduction assisted by compressed air in flame furnace AAS: a simple and sensitive method for the determination of traces of toxic elements.
    Berndt H; Pulvermacher E
    Anal Bioanal Chem; 2005 Aug; 382(8):1826-34. PubMed ID: 16001240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvements in cobalt determination by thermospray flame furnace atomic absorption spectrometry using an on-line derivatization strategy.
    Matos GD; Arruda MA
    Talanta; 2008 Jul; 76(2):475-8. PubMed ID: 18585309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-line preconcentration and determination of copper, lead and chromium(VI) using unloaded polyurethane foam packed column by flame atomic absorption spectrometry in natural waters and biological samples.
    Anthemidis AN; Zachariadis GA; Stratis JA
    Talanta; 2002 Nov; 58(5):831-40. PubMed ID: 18968813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of supramolecular solvent-based microextraction and ultrasound-assisted extraction for cadmium determination in flaxseed flour by thermospray flame furnace atomic absorption spectrometry.
    Lemes LFR; Tarley CRT
    Food Chem; 2021 Mar; 357():129695. PubMed ID: 33866245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of Cd in biological samples by flame AAS following on-line preconcentration by complexation with O,O-diethyldithiophosphate and solid phase extraction with Amberlite XAD-4.
    Santos EJ; Herrmann AB; Ribeiro AS; Curtius AJ
    Talanta; 2005 Jan; 65(2):593-7. PubMed ID: 18969840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potentialities of thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) in the fast sequential determination of Cd, , Pb and.
    Miranda K; Rodrigues Pereira-Filho E
    Anal Methods; 2009 Dec; 1(3):215-219. PubMed ID: 32938061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field preconcentration of cadmium from seawater by using a minicolumn packed with Amberlite XAD-4/4-(2-pyridylazo) resorcinol and its flow-injection-flame atomic absorption spectrometric determination at the ng L(-1) Level.
    Yebra MC; Salgado J; Puig L; Moreno-Cid A
    Anal Bioanal Chem; 2002 Oct; 374(3):530-4. PubMed ID: 12373405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of selenium behavior in thermospray flame furnace atomic absorption spectrometry.
    Rosini F; Nascentes CC; Neira JY; Nóbrega JA
    Talanta; 2007 Oct; 73(5):845-9. PubMed ID: 19073110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gallium trace on-line preconcentration/separation and determination using a polyurethane foam mini-column and flame atomic absorption spectrometry. Application in aluminum alloys, natural waters and urine.
    Anthemidis AN; Zachariadis GA; Stratis JA
    Talanta; 2003 Jul; 60(5):929-36. PubMed ID: 18969117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of cadmium and iron adsorption in sediment, employing a flow injection analysis system with on line filtration and detection by flame atomic absorption spectrometry and thermospray flame furnace atomic absorption spectrometry.
    de Oliveira FM; Marchioni C; Barros JA; do Lago AC; Wisniewski C; Luccas PO
    Anal Chim Acta; 2014 Jan; 809():82-7. PubMed ID: 24418136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preconcentration procedure using in situ solvent formation microextraction in the presence of ionic liquid for cadmium determination in saline samples by flame atomic absorption spectrometry.
    Mahpishanian S; Shemirani F
    Talanta; 2010 Jul; 82(2):471-6. PubMed ID: 20602922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The determination of molybdenum in water and biological samples by graphite furnace atomic spectrometry after polyurethane foam column separation and preconcentration.
    Ferreira SL; Dos Santos HC; Campos RC
    Talanta; 2003 Dec; 61(6):789-95. PubMed ID: 18969243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Nb(2)O(5)-SiO(2) in an automated on-line preconcentration system for determination of copper and cadmium by FAAS.
    da Silva EL; Ganzarolli EM; Carasek E
    Talanta; 2004 Mar; 62(4):727-33. PubMed ID: 18969355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of trace cadmium in rice by flow injection on-line filterless precipitation-dissolution preconcentration coupled with flame atomic absorption spectrometry.
    Ye QY; Li Y; Jiang Y; Yan XP
    J Agric Food Chem; 2003 Apr; 51(8):2111-4. PubMed ID: 12670143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Description of the thermospray formed at low flow rate in thermospray flame furnace atomic absorption spectrometry based on high-speed images.
    Brancalion ML; Sabadini E; Arruda MA
    Anal Chem; 2007 Sep; 79(17):6527-33. PubMed ID: 17649974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of submicroliter samples using micro thermospray flame furnace atomic absorption spectrometry.
    Gáspár A; Széles E; Berndt H
    Anal Bioanal Chem; 2002 Jan; 372(1):136-40. PubMed ID: 11939182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.