These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 15228126)

  • 21. Ultrasonic particle-concentration for sheathless focusing of particles for analysis in a flow cytometer.
    Goddard G; Martin JC; Graves SW; Kaduchak G
    Cytometry A; 2006 Feb; 69(2):66-74. PubMed ID: 16419065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Particle characterization and separation by a coupled acoustic-gravity field.
    Masudo T; Okada T
    Anal Chem; 2001 Jul; 73(14):3467-71. PubMed ID: 11476249
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces.
    Petersson F; Nilsson A; Holm C; Jonsson H; Laurell T
    Lab Chip; 2005 Jan; 5(1):20-2. PubMed ID: 15616735
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mode-switching: a new technique for electronically varying the agglomeration position in an acoustic particle manipulator.
    Glynne-Jones P; Boltryk RJ; Harris NR; Cranny AW; Hill M
    Ultrasonics; 2010 Jan; 50(1):68-75. PubMed ID: 19709711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DC-dielectrophoretic separation of microparticles using an oil droplet obstacle.
    Barbulovic-Nad I; Xuan X; Lee JS; Li D
    Lab Chip; 2006 Feb; 6(2):274-9. PubMed ID: 16450038
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optically induced flow cytometry for continuous microparticle counting and sorting.
    Lin YH; Lee GB
    Biosens Bioelectron; 2008 Dec; 24(4):572-8. PubMed ID: 18635347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Study on internal flow and surface deformation of large droplet levitated by ultrasonic wave.
    Abe Y; Hyuga D; Yamada S; Aoki K
    Ann N Y Acad Sci; 2006 Sep; 1077():49-62. PubMed ID: 17124114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Capillary magnetic field flow fractionation and analysis of magnetic nanoparticles.
    Latham AH; Freitas RS; Schiffer P; Williams ME
    Anal Chem; 2005 Aug; 77(15):5055-62. PubMed ID: 16053322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays.
    Evander M; Johansson L; Lilliehorn T; Piskur J; Lindvall M; Johansson S; Almqvist M; Laurell T; Nilsson J
    Anal Chem; 2007 Apr; 79(7):2984-91. PubMed ID: 17313183
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acoustic particle filter with adjustable effective pore size for automated sample preparation.
    Jung B; Fisher K; Ness KD; Rose KA; Mariella RP
    Anal Chem; 2008 Nov; 80(22):8447-52. PubMed ID: 18847218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fast "hyperlayer" separation development in sedimentation field flow fractionation.
    Kassab JR; Cardot PJ; Zahoransky RA; Battu S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Nov; 826(1-2):8-16. PubMed ID: 16011912
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Finite element modeling of a microparticle manipulator.
    Neild A; Oberti S; Haake A; Dual J
    Ultrasonics; 2006 Dec; 44 Suppl 1():e455-60. PubMed ID: 16797643
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduced gravity evaluation of potential spaceflight-compatible flow cytometer technology.
    Crucian B; Sams C
    Cytometry B Clin Cytom; 2005 Jul; 66(1):1-9. PubMed ID: 15924305
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Colloidal phase transition driven by alternating electric field.
    Liu Y; Narayanan J; Liu XY
    J Chem Phys; 2006 Mar; 124(12):124906. PubMed ID: 16599724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The use of laminar tube flow in the study of hydrodynamic and chemical influences on polymer flocculation of Escherichia coli.
    Whittington PN; George N
    Biotechnol Bioeng; 1992 Aug; 40(4):451-8. PubMed ID: 18601138
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards the automation of micron-sized particle handling by use of acoustic manipulation assisted by microfluidics.
    Oberti S; Neild A; Möller D; Dual J
    Ultrasonics; 2008 Nov; 48(6-7):529-36. PubMed ID: 18649908
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimal separation times for electrical field flow fractionation with Couette flows.
    Pascal J; O'Hara R; Oyanader M; Arce PE
    Electrophoresis; 2008 Nov; 29(20):4238-46. PubMed ID: 18844324
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial confinement of ultrasonic force fields in microfluidic channels.
    Manneberg O; Melker Hagsäter S; Svennebring J; Hertz HM; Kutter JP; Bruus H; Wiklund M
    Ultrasonics; 2009 Jan; 49(1):112-9. PubMed ID: 18701122
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced thermal stability and mismatch discrimination of mutation-carrying DNA duplexes and their kinetic and thermodynamic properties in microchannel laminar flow.
    Nagata MP; Yamashita K; Miyazaki M; Nakamura H; Maeda H
    Anal Biochem; 2009 Jul; 390(1):38-45. PubMed ID: 19332018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.