These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 15228313)

  • 1. Real-time pH microscopy down to the molecular level by combined scanning electrochemical microscopy/single-molecule fluorescence spectroscopy.
    Boldt FM; Heinze J; Diez M; Petersen J; Börsch M
    Anal Chem; 2004 Jul; 76(13):3473-81. PubMed ID: 15228313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton-powered subunit rotation in single membrane-bound F0F1-ATP synthase.
    Diez M; Zimmermann B; Börsch M; König M; Schweinberger E; Steigmiller S; Reuter R; Felekyan S; Kudryavtsev V; Seidel CA; Gräber P
    Nat Struct Mol Biol; 2004 Feb; 11(2):135-41. PubMed ID: 14730350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscopy of single F(o) F(1) -ATP synthases--the unraveling of motors, gears, and controls.
    Börsch M
    IUBMB Life; 2013 Mar; 65(3):227-37. PubMed ID: 23378185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subunit movement in individual H+-ATP synthases during ATP synthesis and hydrolysis revealed by fluorescence resonance energy transfer.
    Börsch M; Gräber P
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):878-82. PubMed ID: 16042618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic model of ATP synthase: pH dependence of the rate of ATP synthesis.
    Jain S; Nath S
    FEBS Lett; 2000 Jul; 476(3):113-7. PubMed ID: 10913596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stepwise rotation of the gamma-subunit of EF(0)F(1)-ATP synthase observed by intramolecular single-molecule fluorescence resonance energy transfer.
    Börsch M; Diez M; Zimmermann B; Reuter R; Gräber P
    FEBS Lett; 2002 Sep; 527(1-3):147-52. PubMed ID: 12220651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence resonance energy transfer in single enzyme molecules with a quantum dot as donor.
    Galvez EM; Zimmermann B; Rombach-Riegraf V; Bienert R; Gräber P
    Eur Biophys J; 2008 Oct; 37(8):1367-71. PubMed ID: 18584167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of single nucleotides to H+-ATP synthases observed by fluorescence resonance energy transfer.
    Steigmiller S; Zimmermann B; Diez M; Börsch M; Gräber P
    Bioelectrochemistry; 2004 Jun; 63(1-2):79-85. PubMed ID: 15110252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Twisting and subunit rotation in single F(O)(F1)-ATP synthase.
    Sielaff H; Börsch M
    Philos Trans R Soc Lond B Biol Sci; 2013 Feb; 368(1611):20120024. PubMed ID: 23267178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-dependent FRET with single enzymes: domain motions and catalysis in H(+)-ATP synthases.
    Bienert R; Zimmermann B; Rombach-Riegraf V; Gräber P
    Chemphyschem; 2011 Feb; 12(3):510-7. PubMed ID: 21287678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging biocatalytic activity of enzyme-polymer spots by means of combined scanning electrochemical microscopy/electrogenerated chemiluminescence.
    Lei R; Stratmann L; Schäfer D; Erichsen T; Neugebauer S; Li N; Schuhmann W
    Anal Chem; 2009 Jun; 81(12):5070-4. PubMed ID: 19441829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Essentials for ATP synthesis by F1F0 ATP synthases.
    von Ballmoos C; Wiedenmann A; Dimroth P
    Annu Rev Biochem; 2009; 78():649-72. PubMed ID: 19489730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The F0F1-type ATP synthases of bacteria: structure and function of the F0 complex.
    Deckers-Hebestreit G; Altendorf K
    Annu Rev Microbiol; 1996; 50():791-824. PubMed ID: 8905099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two distinct proton binding sites in the ATP synthase family.
    von Ballmoos C; Dimroth P
    Biochemistry; 2007 Oct; 46(42):11800-9. PubMed ID: 17910472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-molecule fluorescence resonance energy transfer techniques on rotary ATP synthases.
    Börsch M
    Biol Chem; 2011 Jan; 392(1-2):135-42. PubMed ID: 21073359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging local proton fluxes through a polycarbonate membrane by using scanning electrochemical microscopy and functionalized alkanethiols.
    Baltes N; Heinze J
    Chemphyschem; 2009 Jan; 10(1):174-9. PubMed ID: 19072816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subunit movements in single membrane-bound H+-ATP synthases from chloroplasts during ATP synthesis.
    Bienert R; Rombach-Riegraf V; Diez M; Gräber P
    J Biol Chem; 2009 Dec; 284(52):36240-36247. PubMed ID: 19864418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous visualization of surface topography and concentration field by means of scanning electrochemical microscopy using a single electrochemical probe and impedance spectroscopy.
    Pähler M; Schuhmann W; Gratzl M
    Chemphyschem; 2011 Oct; 12(15):2798-805. PubMed ID: 22002894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the gamma-epsilon complex of ATP synthase.
    Rodgers AJ; Wilce MC
    Nat Struct Biol; 2000 Nov; 7(11):1051-4. PubMed ID: 11062562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical characteristics of atomic force microscopy tips for single-molecule fluorescence applications.
    Gaiduk A; Kühnemuth R; Antonik M; Seidel CA
    Chemphyschem; 2005 May; 6(5):976-83. PubMed ID: 15884085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.